Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169269

RESUMO

Novel Immunological and Mass Spectrometry Methods for Comprehensive Analysis of Recalcitrant Oligosaccharides in AFEX Pretreated Corn Stover. Lignocellulosic biomass is a sustainable alternative to fossil fuel and is extensively used for developing bio-based technologies to produce products such as food, feed, fuel, and chemicals. The key to these technologies is to develop cost competitive processes to convert complex carbohydrates present in plant cell wall to simple sugars such as glucose, xylose, and arabinose. Since lignocellulosic biomass is highly recalcitrant, it must undergo a combination of thermochemical treatment such as Ammonia Fiber Expansion (AFEX), dilute acid (DA), Ionic Liquid (IL) and biological treatment such as enzyme hydrolysis and microbial fermentation to produce desired products. However, when using commercial fungal enzymes during hydrolysis, only 75-85% of the soluble sugars generated are monomeric sugars, while the remaining 15-25% are soluble recalcitrant oligosaccharides that cannot be easily utilized by microorganisms. Previously, we successfully separated and purified the soluble recalcitrant oligosaccharides using a combination of charcoal and celite-based separation followed by size exclusion chromatography and studies their inhibitory properties on enzymes. We discovered that the oligosaccharides with higher degree of polymerization (DP) containing methylated uronic acid substitutions were more recalcitrant towards commercial enzyme mixtures than lower DP and neutral oligosaccharides. Here, we report the use of several complementary techniques that include glycome profiling using plant biomass glycan specific monoclonal antibodies (mAbs) to characterize sugar linkages in plant cell walls and enzymatic hydrolysate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using structurally-informative diagnostic peaks offered by negative ion post-secondary decay spectra, gas chromatography followed by mass spectrometry (GC-MS) to characterize oligosaccharide sugar linkages with and without derivatization. Since oligosaccharides (DP 4-20) are small, it is challenging to mobilize these molecules for mAbs binding and characterization. To overcome this problem, we have applied a new biotin-coupling based oligosaccharide immobilization method that successfully tagged most of the low DP soluble oligosaccharides on to a micro-plate surface followed by specific linkage analysis using mAbs in a high-throughput system. This new approach will help develop more advanced versions of future high throughput glycome profiling methods that can be used to separate and characterize oligosaccharides present in biomarkers for diagnostic applications.


Assuntos
Anticorpos Monoclonais/imunologia , Biotina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oligossacarídeos/química , Oligossacarídeos/imunologia , Extratos Vegetais/química , Extratos Vegetais/imunologia , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zea mays/química , Biomassa , Configuração de Carboidratos , Parede Celular/química , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Hidrólise , Lignina/química , Açúcares/química
2.
Adv Sci (Weinh) ; 6(13): 1801980, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31380177

RESUMO

Bacterial protein secretion represents a significant challenge in biotechnology, which is essential for the cost-effective production of therapeutics, enzymes, and other functional proteins. Here, it is demonstrated that proteomics-guided engineering of transcription, translation, secretion, and folding of ligninolytic laccase balances the process, minimizes the toxicity, and enables efficient heterologous secretion with a total protein yield of 13.7 g L-1. The secretory laccase complements the biochemical limits on lignin depolymerization well in Rhodococcus opacus PD630. Further proteomics analysis reveals the mechanisms for the oleaginous phenotype of R. opacus PD630, where a distinct multiunit fatty acid synthase I drives the carbon partition to storage lipid. The discovery guides the design of efficient lipid conversion from lignin and carbohydrate. The proteomics-guided integration of laccase-secretion and lipid production modules enables a high titer in converting lignin-enriched biorefinery waste to lipid. The fundamental mechanisms, engineering components, and design principle can empower transformative platforms for biomanufacturing and biorefining.

3.
Bioresour Technol ; 272: 326-336, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384207

RESUMO

The co-digestion of pretreated sugarcane lignocelluloses with dairy cow manure (DCM) as a bioenergy production and waste management strategy, for intensive livestock farms located in sugarcane regions, was investigated. Ammonia fiber expansion (AFEX) increased the nitrogen content and accelerated the biodegradability of sugarcane bagasse (SCB) and cane leaf matter (CLM) through the cleavage of lignin carbohydrate crosslinks, resulting in the highest specific methane yields (292-299 L CH4/kg VSadded), biogas methane content (57-59% v/v) and biodegradation rates, with or without co-digestion with DCM. To obtain comparable methane yields, untreated and steam exploded (StEx) SCB and CLM had to be co-digested with DCM, at mass ratios providing initial C/N ratios in the range of 18 to 35. Co-digestion with DCM improved the nutrient content of the solid digestates, providing digestates that could be used as biofertilizer to replace CLM that is removed from sugarcane fields during green harvesting.


Assuntos
Amônia/metabolismo , Celulose/metabolismo , Esterco , Saccharum/metabolismo , Anaerobiose , Animais , Biodegradação Ambiental , Biocombustíveis , Bovinos , Fibras na Dieta/metabolismo , Feminino , Gado/metabolismo , Metano/biossíntese , Vapor
5.
R Soc Open Sci ; 5(6): 171529, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30110471

RESUMO

Removing alkali-soluble lignin using extractive ammonia (EA) pretreatment of corn stover (CS) is known to improve biomass conversion efficiency during enzymatic hydrolysis. In this study, we investigated the effect of alkali-soluble lignin on six purified core glycosyl hydrolases and their enzyme synergies, adopting 31 enzyme combinations derived by a five-component simplex centroid model, during EA-CS hydrolysis. Hydrolysis experiment was carried out using EA-CS(-) (approx. 40% lignin removed during EA pretreatment) and EA-CS(+) (where no lignin was extracted). Enzymatic hydrolysis experiments were done at three different enzyme mass loadings (7.5, 15 and 30 mg protein g-1 glucan), using a previously developed high-throughput microplate-based protocol, and the sugar yields of glucose and xylose were detected. The optimal enzyme combinations (based on % protein mass loading) of six core glycosyl hydrolases for EA-CS(-) and EA-CS(+) were determined that gave high sugar conversion. The inhibition of lignin on optimal enzyme ratios was studied, by adding fixed amount of alkali-soluble lignin fractions to EA-CS(-), and pure Avicel, beechwood xylan and evaluating their sugar conversion. The optimal enzyme ratios that gave higher sugar conversion for EA-CS(-) were CBH I: 27.2-28.2%, CBH II: 18.2-22.2%, EG I: 29.2-34.3%, EX: 9.0-14.1%, ßX: 7.2-10.2%, ßG: 1.0-5.0% (at 7.5-30 mg g-1 protein mass loading). Endoglucanase was inhibited to a greater extent than other core cellulases and xylanases by lignin during enzyme hydrolysis. We also found that alkali-soluble lignin inhibits cellulase more strongly than hemicellulase during the course of enzyme hydrolysis.

6.
Biotechnol Biofuels ; 11: 127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755586

RESUMO

BACKGROUND: Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. RESULTS: Ethanol yields between 249 and 256 kg Mg-1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg-1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g-1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic® CTec3, Cellic® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha-1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. CONCLUSIONS: AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.

7.
Biotechnol Biofuels ; 11: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29371883

RESUMO

BACKGROUND: Agave-based alcoholic beverage companies generate thousands of tons of solid residues per year in Mexico. These agave residues might be used for biofuel production due to their abundance and favorable sustainability characteristics. In this work, agave leaf and bagasse residues from species Agave tequilana and Agave salmiana were subjected to pretreatment using the ammonia fiber expansion (AFEX) process. The pretreatment conditions were optimized using a response surface design methodology. We also identified commercial enzyme mixtures that maximize sugar yields for AFEX-pretreated agave bagasse and leaf matter, at ~ 6% glucan (w/w) loading enzymatic hydrolysis. Finally, the pretreated agave hydrolysates (at a total solids loading of ~ 20%) were used for ethanol fermentation using the glucose- and xylose-consuming strain Saccharomyces cerevisiae 424A (LNH-ST), to determine ethanol yields at industrially relevant conditions. RESULTS: Low-severity AFEX pretreatment conditions are required (100-120 °C) to enable efficient enzymatic deconstruction of the agave cell wall. These studies showed that AFEX-pretreated A. tequilana bagasse, A. tequilana leaf fiber, and A. salmiana bagasse gave ~ 85% sugar conversion during enzyme hydrolysis and over 90% metabolic yields of ethanol during fermentation without any washing step or nutrient supplementation. On the other hand, although lignocellulosic A. salmiana leaf gave high sugar conversions, the hydrolysate could not be fermented at high solids loadings, apparently due to the presence of natural inhibitory compounds. CONCLUSIONS: These results show that AFEX-pretreated agave residues can be effectively hydrolyzed at high solids loading using an optimized commercial enzyme cocktail (at 25 mg protein/g glucan) producing > 85% sugar conversions and over 40 g/L bioethanol titers. These results show that AFEX technology has considerable potential to convert lignocellulosic agave residues to bio-based fuels and chemicals in a biorefinery.

8.
Biotechnol Bioeng ; 114(8): 1713-1720, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28369757

RESUMO

High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc.


Assuntos
Amônia/química , Celulase/química , Etanol/isolamento & purificação , Etanol/metabolismo , Componentes Aéreos da Planta/microbiologia , Saccharomyces cerevisiae/metabolismo , Zea mays/microbiologia , Reatores Biológicos/microbiologia , Hidrólise , Lignina/química , Lignina/metabolismo , Extração Líquido-Líquido/métodos , Componentes Aéreos da Planta/química , Reciclagem/métodos , Integração de Sistemas , Zea mays/química
9.
Biotechnol Biofuels ; 10: 82, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360940

RESUMO

BACKGROUND: Inefficient carbohydrate conversion has been an unsolved problem for various lignocellulosic biomass pretreatment technologies, including AFEX, dilute acid, and ionic liquid pretreatments. Previous work has shown 22% of total carbohydrates are typically unconverted, remaining as soluble or insoluble oligomers after hydrolysis (72 h) with excess commercial enzyme loading (20 mg enzymes/g biomass). Nearly one third (7 out of 22%) of these total unconverted carbohydrates are present in unhydrolyzed solid (UHS) residues. The presence of these unconverted carbohydrates leads to a considerable sugar yield loss, which negatively impacts the overall economics of the biorefinery. Current commercial enzyme cocktails are not effective to digest specific cross-linkages in plant cell wall glycans, especially some of those present in hemicelluloses and pectins. Thus, obtaining information about the most recalcitrant non-cellulosic glycan cross-linkages becomes a key study to rationally improve commercial enzyme cocktails, by supplementing the required enzyme activities for hydrolyzing those unconverted glycans. RESULTS: In this work, cell wall glycans that could not be enzymatically converted to monomeric sugars from AFEX-pretreated corn stover (CS) were characterized using compositional analysis and glycome profiling tools. The pretreated CS was hydrolyzed using commercial enzyme mixtures comprising cellulase and hemicellulase at 7% glucan loading (~20% solid loading). The carbohydrates present in UHS and liquid hydrolysate were evaluated over a time period of 168 h enzymatic hydrolysis. Cell wall glycan-specific monoclonal antibodies (mAbs) were used to characterize the type and abundance of non-cellulosic polysaccharides present in UHS over the course of enzymatic hydrolysis. 4-O-methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan were found to be the most abundant epitopes recognized by mAbs in UHS and liquid hydrolysate, suggesting that the commercial enzyme cocktails used in this work are unable to effectively target those substituted polysaccharide residues. CONCLUSION: To our knowledge, this is the first report using glycome profiling as a tool to dynamically monitor recalcitrant cell wall carbohydrates during the course of enzymatic hydrolysis. Glycome profiling of UHS and liquid hydrolysates unveiled some of the glycans that are not cleaved and enriched after enzyme hydrolysis. The major polysaccharides include 4-O-methyl-d-glucuronic acid-substituted xylan and pectic-arabinogalactan, suggesting that enzymes with glucuronidase and arabinofuranosidase activities are required to maximize monomeric sugar yields. This methodology provides a rapid tool to assist in developing new enzyme cocktails, by supplementing the existing cocktails with the required enzyme activities for achieving complete deconstruction of pretreated biomass in the future.

10.
Waste Manag ; 62: 247-254, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28223079

RESUMO

Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil.


Assuntos
Fermentação , Alimentos , Resíduos de Alimentos , Eliminação de Resíduos/métodos , Carboidratos , Etanol , Hidrólise , Saccharomyces cerevisiae
11.
Bioresour Technol ; 226: 9-17, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27951509

RESUMO

In this work, corn stover subjected to ammonia fiber expansion (AFEX™)1 pretreatment or alkaline pre-extraction followed by hydrogen peroxide post-treatment (AHP pretreatment) were compared for their enzymatic hydrolysis yields over a range of solids loadings, enzymes loadings, and enzyme combinations. Process techno-economic models were compared for cellulosic ethanol production for a biorefinery that handles 2000tons per day of corn stover employing a centralized biorefinery approach with AHP or a de-centralized AFEX pretreatment followed by biomass densification feeding a centralized biorefinery. A techno-economic analysis (TEA) of these scenarios shows that the AFEX process resulted in the highest capital investment but also has the lowest minimum ethanol selling price (MESP) at $2.09/gal, primarily due to good energy integration and an efficient ammonia recovery system. The economics of AHP could be made more competitive if oxidant loadings were reduced and the alkali and sugar losses were also decreased.


Assuntos
Biotecnologia/métodos , Etanol/metabolismo , Zea mays/química , Amônia/química , Biomassa , Biotecnologia/economia , Custos e Análise de Custo , Enzimas/química , Enzimas/metabolismo , Etanol/economia , Peróxido de Hidrogênio/química , Hidrólise , Monossacarídeos/química , Brotos de Planta/química , Brotos de Planta/metabolismo , Hidróxido de Sódio/química , Zea mays/metabolismo
12.
Appl Microbiol Biotechnol ; 100(16): 7349-58, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27364625

RESUMO

Apple pomace samples were evaluated for conversion to ethanol at industrial relevant conditions. Biomass degradation efficiency by commercial enzymes was evaluated at 20 % solid loading for dilute sulfuric acid, calcium oxide, and autoclave without any chemical (control) apple pomace samples. The control and calcium oxide-pretreated pomace provided similar sugar yields, while dilute sulfuric acid pretreatment resulted in reduced sugar yields. The control and calcium oxide-pretreated pomace hydrolysate were fermented to ethanol using a native Saccharomyces cerevisiae yeast strain, producing 38.8 and 36.9 g/L of ethanol, respectively. When control apple pomace sample loading was increased from 20 to 30 %, 57.5 and 50.1 g/L of glucose and fructose was produced, respectively. Lastly, we found that unhydrolyzed solids (UHS) present during fermentation had little effect on ethanol yield, as 53.6 and 53.8 g/L of ethanol were produced with and without UHS, respectively. Overall, ethanol yields were 134 g per kg of dry apple pomace. A complete process mass balance for enzyme hydrolysis and ethanol fermentation is provided in this manuscript. These results show that apple pomace is an excellent feedstock for producing ethanol that could be either used as biofuel or as beverage.


Assuntos
Biocombustíveis/microbiologia , Etanol/metabolismo , Fermentação/fisiologia , Malus/metabolismo , Saccharomyces cerevisiae/metabolismo , Bebidas , Biomassa , Compostos de Cálcio/química , Glucose/metabolismo , Óxidos/química , Ácidos Sulfúricos/química
13.
AMB Express ; 6(1): 18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936848

RESUMO

The lignocellulosic fractions of municipal solid waste (MSW) can be used as renewable resources due to the widespread availability, predictable and low pricing and suitability for most conversion technologies. In particular, after the typical paper recycling loop, the newspaper waste (NW) could be further valorized as feedstock in biorefinering industry since it still contains up to 70 % polysaccharides. In this study, two different physicochemical methods-ammonia fiber expansion (AFEX) and extractive ammonia (EA) were tested for the pretraetment of NW. Furthermore, based on the previously demonstrated ability of the recombinant enzymes endocellulase rCelStrep, α-L-arabinofuranosidase rPoAbf and its evolved variant rPoAbf F435Y/Y446F to improve the saccharification of different lignocellulosic pretreated biomasses (such as corn stover and Arundo donax), in this study these enzymes were tested for the hydrolysis of pretreated NW, with the aim of valorizing the lignocellulosic fractions of the MSW. In particular, a mixture of purified enzymes containing cellulases, xylanases and accessory hemicellulases, was chosen as reference mix and rCelStrep and rPoAbf or its variant were replaced to EGI and Larb. The results showed that these enzymatic mixes are not suitable for the hydrolysis of NW after AFEX or EA pretreatment. On the other hand, when the enzymes rCelStrep, rPoAbf and rPoAbf F435Y/Y446F were tested for their effect in hydrolysis of pretreated NW by addition to a commercial enzyme mixture, it was shown that the total polysaccharides conversion yield reached 37.32 % for AFEX pretreated NW by adding rPoAbf to the mix whilst the maximum sugars conversion yield for EA pretreated NW was achieved 40.80 % by adding rCelStrep. The maximum glucan conversion yield obtained (45.61 % for EA pretreated NW by adding rCelStrep to the commercial mix) is higher than or comparable to those reported in recent manuscripts adopting hydrolysis conditions similar to those used in this study.

14.
Bioresour Technol ; 211: 216-23, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27017132

RESUMO

A comparative analysis of the response of agave bagasse (AGB) to pretreatment by ammonia fiber expansion (AFEX™), autohydrolysis (AH) and ionic liquid (IL) was performed using 2D nuclear magnetic resonance (NMR) spectroscopy, wet chemistry, enzymatic saccharification and mass balances. It has been found that AFEX pretreatment preserved all carbohydrates in the biomass, whereas AH removed 62.4% of xylan and IL extracted 25% of lignin into wash streams. Syringyl and guaiacyl lignin ratio of untreated AGB was 4.3, whereas for the pretreated biomass the ratios were 4.2, 5.0 and 4.7 for AFEX, AH and IL, respectively. Using NMR spectra, the intensity of ß-aryl ether units in aliphatic, anomeric, and aromatic regions decreased in all three pretreated samples when compared to untreated biomass. Yields of glucose plus xylose in the major hydrolysate stream were 42.5, 39.7 and 26.9kg per 100kg of untreated AGB for AFEX, IL and AH, respectively.


Assuntos
Agave/química , Biomassa , Carboidratos/isolamento & purificação , Celulose/química , Fibras na Dieta/análise
15.
Biotechnol Biofuels ; 8: 195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617670

RESUMO

BACKGROUND: Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18-25 % of the total soluble sugars in the hydrolysate and 12-18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7-9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. RESULTS: Oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEX-corn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. CONCLUSION: The carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.

16.
Biotechnol Biofuels ; 8: 60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25878726

RESUMO

BACKGROUND: Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. RESULTS: Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol-challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARS Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. CONCLUSIONS: Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.

17.
Biotechnol Biofuels ; 8(1): 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25642283

RESUMO

BACKGROUND: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). The SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. RESULTS: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. CONCLUSIONS: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.

18.
Appl Microbiol Biotechnol ; 98(17): 7645-57, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25052467

RESUMO

Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40 % of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.


Assuntos
Metabolismo dos Lipídeos , Leveduras/classificação , Leveduras/metabolismo , Zea mays/metabolismo , Meios de Cultura/química , Glucose/metabolismo , Xilose/metabolismo , Leveduras/crescimento & desenvolvimento
19.
Biotechnol Biofuels ; 7: 72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24917886

RESUMO

BACKGROUND: In a biorefinery producing cellulosic biofuels, biomass pretreatment will significantly influence the efficacy of enzymatic hydrolysis and microbial fermentation. Comparison of different biomass pretreatment techniques by studying the impact of pretreatment on downstream operations at industrially relevant conditions and performing comprehensive mass balances will help focus attention on necessary process improvements, and thereby help reduce the cost of biofuel production. RESULTS: An on-going collaboration between the three US Department of Energy (DOE) funded bioenergy research centers (Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI) and BioEnergy Science Center (BESC)) has given us a unique opportunity to compare the performance of three pretreatment processes, notably dilute acid (DA), ionic liquid (IL) and ammonia fiber expansion (AFEX(TM)), using the same source of corn stover. Separate hydrolysis and fermentation (SHF) was carried out using various combinations of commercially available enzymes and engineered yeast (Saccharomyces cerevisiae 424A) strain. The optimal commercial enzyme combination (Ctec2: Htec2: Multifect Pectinase, percentage total protein loading basis) was evaluated for each pretreatment with a microplate-based assay using milled pretreated solids at 0.2% glucan loading and 15 mg total protein loading/g of glucan. The best enzyme combinations were 67:33:0 for DA, 39:33:28 for IL and 67:17:17 for AFEX. The amounts of sugar (kg) (glucose: xylose: total gluco- and xylo-oligomers) per 100 kg of untreated corn stover produced after 72 hours of 6% glucan loading enzymatic hydrolysis were: DA (25:2:2), IL (31:15:2) and AFEX (26:13:7). Additionally, the amounts of ethanol (kg) produced per 100 kg of untreated corn stover and the respective ethanol metabolic yield (%) achieved with exogenous nutrient supplemented fermentations were: DA (14.0, 92.0%), IL (21.2, 93.0%) and AFEX (20.5, 95.0%), respectively. The reason for lower ethanol yield for DA is because most of the xylose produced during the pretreatment was removed and not converted to ethanol during fermentation. CONCLUSIONS: Compositional analysis of the pretreated biomass solids showed no significant change in composition for AFEX treated corn stover, while about 85% of hemicellulose was solubilized after DA pretreatment, and about 90% of lignin was removed after IL pretreatment. As expected, the optimal commercial enzyme combination was different for the solids prepared by different pretreatment technologies. Due to loss of nutrients during the pretreatment and washing steps, DA and IL pretreated hydrolysates required exogenous nutrient supplementation to ferment glucose and xylose efficiently, while AFEX pretreated hydrolysate did not require nutrient supplementation.

20.
Appl Environ Microbiol ; 78(9): 3442-57, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389370

RESUMO

The physiology of ethanologenic Escherichia coli grown anaerobically in alkali-pretreated plant hydrolysates is complex and not well studied. To gain insight into how E. coli responds to such hydrolysates, we studied an E. coli K-12 ethanologen fermenting a hydrolysate prepared from corn stover pretreated by ammonia fiber expansion. Despite the high sugar content (∼6% glucose, 3% xylose) and relatively low toxicity of this hydrolysate, E. coli ceased growth long before glucose was depleted. Nevertheless, the cells remained metabolically active and continued conversion of glucose to ethanol until all glucose was consumed. Gene expression profiling revealed complex and changing patterns of metabolic physiology and cellular stress responses during an exponential growth phase, a transition phase, and the glycolytically active stationary phase. During the exponential and transition phases, high cell maintenance and stress response costs were mitigated, in part, by free amino acids available in the hydrolysate. However, after the majority of amino acids were depleted, the cells entered stationary phase, and ATP derived from glucose fermentation was consumed entirely by the demands of cell maintenance in the hydrolysate. Comparative gene expression profiling and metabolic modeling of the ethanologen suggested that the high energetic cost of mitigating osmotic, lignotoxin, and ethanol stress collectively limits growth, sugar utilization rates, and ethanol yields in alkali-pretreated lignocellulosic hydrolysates.


Assuntos
Escherichia coli K12/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Estresse Fisiológico , Zea mays/metabolismo , Aminoácidos/metabolismo , Anaerobiose , Escherichia coli K12/crescimento & desenvolvimento , Fermentação , Perfilação da Expressão Gênica , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...