Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(8): 086301, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683147

RESUMO

Theoretical calculations predict the anisotropic dissipationless circulating current induced by a spin defect in a two-dimensional electron gas. The shape and spatial extent of these dissipationless circulating currents depend dramatically on the relative strengths of spin-orbit fields with differing spatial symmetry, offering the potential to use an electric gate to manipulate nanoscale magnetic fields and couple magnetic defects. The spatial structure of the magnetic field produced by this current is calculated and provides a direct way to measure the spin-orbit fields of the host, as well as the defect spin orientation, e.g., through scanning nanoscale magnetometry.

2.
Nanotechnology ; 33(30)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395644

RESUMO

We investigated metal-organic vapor phase epitaxy grown droplet epitaxy (DE) and Stranski-Krastanov (SK) InAs/InP quantum dots (QDs) by cross-sectional scanning tunneling microscopy (X-STM). We present an atomic-scale comparison of structural characteristics of QDs grown by both growth methods proving that the DE yields more uniform and shape-symmetric QDs. Both DE and SKQDs are found to be truncated pyramid-shaped with a large and sharp top facet. We report the formation of localized etch pits for the first time in InAs/InP DEQDs with atomic resolution. We discuss the droplet etching mechanism in detail to understand the formation of etch pits underneath the DEQDs. A summary of the effect of etch pit size and position on fine structure splitting (FSS) is provided via thek·ptheory. Finite element (FE) simulations are performed to fit the experimental outward relaxation and lattice constant profiles of the cleaved QDs. The composition of QDs is estimated to be pure InAs obtained by combining both FE simulations and X-STM results. The preferential formation of {136} and {122} side facets was observed for the DEQDs. The formation of a DE wetting layer from As-P surface exchange is compared with the standard SKQDs wetting layer. The detailed structural characterization performed in this work provides valuable feedback for further growth optimization to obtain QDs with even lower FSS for applications in quantum technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...