Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(8): 110529, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39161957

RESUMO

The cellular and molecular heterogeneity of tumors is a major obstacle to cancer immunotherapy. Here, we use a systems biology approach to derive a signature of the main sources of heterogeneity in the tumor microenvironment (TME) from lung cancer transcriptomics. We demonstrate that this signature, which we called iHet, is conserved in different cancers and associated with antitumor immunity. Through analysis of single-cell and spatial transcriptomics data, we trace back the cellular origin of the variability explaining the iHet signature. Finally, we demonstrate that iHet has predictive value for cancer immunotherapy, which can be further improved by disentangling three major determinants of anticancer immune responses: activity of immune cells, immune infiltration or exclusion, and cancer-cell foreignness. This work shows how transcriptomics data can be integrated to derive a holistic representation of the phenotypic heterogeneity of the TME and to predict its unfolding and fate during immunotherapy with immune checkpoint blockers.

2.
Bioinform Adv ; 2(1): vbac092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699399

RESUMO

Motivation: Recently, several computational modeling approaches, such as agent-based models, have been applied to study the interaction dynamics between immune and tumor cells in human cancer. However, each tumor is characterized by a specific and unique tumor microenvironment, emphasizing the need for specialized and personalized studies of each cancer scenario. Results: We present MAST, a hybrid Multi-Agent Spatio-Temporal model which can be informed using a data-driven approach to simulate unique tumor subtypes and tumor-immune dynamics starting from high-throughput sequencing data. It captures essential components of the tumor microenvironment by coupling a discrete agent-based model with a continuous partial differential equations-based model.The application to real data of human colorectal cancer tissue investigating the spatio-temporal evolution and emergent properties of four simulated human colorectal cancer subtypes, along with their agreement with current biological knowledge of tumors and clinical outcome endpoints in a patient cohort, endorse the validity of our approach. Availability and implementation: MAST, implemented in Python language, is freely available with an open-source license through GitLab (https://gitlab.com/sysbiobig/mast), and a Docker image is provided to ease its deployment. The submitted software version and test data are available in Zenodo at https://dx.doi.org/10.5281/zenodo.7267745. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

3.
Genome Med ; 11(1): 50, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358023

RESUMO

It was highlighted that the original article [1] contained a typesetting mistake in the name of Noel Filipe da Cunha Carvalho de Miranda. This was incorrectly captured as Noel Filipe da Cunha Carvahlo de Miranda. It was also highlighted that in Fig. 3C the left panels Y-axis were cropped and in Fig. 5C, CD8 bar was cropped. This Correction article shows the correct Figs. 3 and 5. The original article has been updated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA