Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cerebellum ; 21(1): 49-54, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33956305

RESUMO

Previous studies using whole exome sequencing (WES) have shown that a significant proportion of adult patients with undiagnosed ataxia in European and North American cohorts have a known genetic cause. Little is known about the diagnostic yield of WES in non-Caucasian ataxic populations. Herein, we used WES to investigate a Brazilian cohort of 76 adult patients with idiopathic ataxia previously screened for trinucleotide expansions in known ataxia genes. We collected clinical and radiological data from each patient. WES was performed following standard procedures. Only variants labeled as pathogenic or likely pathogenic according to American college of medical genetics and genomics (ACMG) criteria were retrieved. We determined the diagnostic yield of WES for the whole cohort and also for subgroups defined according to presence or not of pyramidal signs, peripheral neuropathy, and cerebellar atrophy. There were 41 women and 35 men. Mean age at testing was 48 years. Pyramidal signs, peripheral neuropathy, tremor, and cerebellar atrophy were found in 38.1%, 13.1%, 10.5%, and 68.3% of all subjects, respectively. Diagnostic yield of WES was 35.5%. Thirty-six distinct mutations were found in 20 different genes, determining the diagnosis of 18 autosomal recessive and 9 autosomal dominant ataxias. SACS and SPG7 were the most frequently found underlying genes. WES performed better in the subgroup with vs the subgroup without spasticity (p = 0.005). WES was diagnostic in 35.5% of cases of the Brazilian cohort of ataxia cases. These results have implications for diagnosis, genetic counseling and eventually treatment.


Assuntos
Ataxia Cerebelar , Adulto , Ataxia , Brasil , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Feminino , Humanos , Masculino , Mutação/genética , Sequenciamento do Exoma
2.
Parkinsonism Relat Disord ; 92: 67-71, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34700111

RESUMO

BACKGROUND: Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare autosomal dominant spinocerebellar ataxia caused by pathological expansion of CAG trinucleotide repeats in the ATN1 gene. Most cases were described in patients from Japanese ancestry who presented with adult-onset progressive cerebellar ataxia associated with cognitive impairment, choreoathetosis and other movement disorders. DRPLA has been rarely described in Brazilian patients. METHODS: We performed a retrospective observational multicentric study including six different Neurology Centers in Brazil. All patients with genetically confirmed diagnosis of DRPLA had their medical records evaluated and clinical, genetic and neuroimaging features were analyzed. RESULTS: We describe of eight Brazilian patients (5 male, 3 female) from four nuclear families with genetically confirmed DRPLA. The most common neurological features included cerebellar ataxia (n = 7), dementia (n = 3), chorea (n = 2), psychiatric disturbances (n = 2), progressive myoclonic epilepsy (n = 2) and severe bulbar signs (n = 1). Progressive myoclonic epilepsy was observed in two juvenile-onset cases before 20-year. A large CAG trinucleotide length was observed in the two juvenile-onset cases and genetic anticipation was observed in all cases. Neuroimaging studies disclosed cerebellar atrophy (n = 6), as well as brainstem and cerebellar atrophy (n = 2) and leukoencephalopathy (n = 1). CONCLUSION: The patients described herein reinforce that clinical features of DRPLA are highly influenced by age of onset, genetic anticipation and CAG repetition lengths. There is a large complex spectrum of neurological features associated with DRPLA, varying from pure cerebellar ataxia to dementia associated with other movement disorders (myoclonus, choreoathetosis). DRPLA is an unusual cause of cerebellar ataxia and neurodegeneration in Brazilian patients.


Assuntos
Povo Asiático/genética , Epilepsias Mioclônicas Progressivas/etnologia , Epilepsias Mioclônicas Progressivas/genética , Proteínas do Tecido Nervoso/genética , Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Brasil , Ataxia Cerebelar/etnologia , Ataxia Cerebelar/genética , Criança , Demência/etnologia , Demência/genética , Feminino , Humanos , Japão/etnologia , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/etnologia , Transtornos dos Movimentos/genética , Neuroimagem , Estudos Retrospectivos , Adulto Jovem
3.
Ann Neurol ; 90(2): 239-252, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048612

RESUMO

OBJECTIVE: Protein misfolding plays a central role not only in amyotrophic lateral sclerosis (ALS), but also in other conditions, such as frontotemporal dementia (FTD), inclusion body myopathy (hIBM) or Paget's disease of bone. The concept of multisystem proteinopathies (MSP) was created to account for those rare families that segregate at least 2 out of these 4 conditions in the same pedigree. The calcium-dependent phospholipid-binding protein annexin A11 was recently associated to ALS in European pedigrees. Herein, we describe in detail 3 Brazilian families presenting hIBM (isolated or in combination with ALS/FTD) caused by the novel p.D40Y change in the gene encoding annexin A11 (ANXA11). METHODS: We collected clinical, genetic, pathological and skeletal muscle imaging from 11 affected subjects. Neuroimaging was also obtained from 8 patients and 8 matched controls. RESULTS: Clinico-radiological phenotype of this novel hIBM reveals a slowly progressive predominant limb-girdle syndrome, but with frequent axial (ptosis/dropped head) and distal (medial gastrocnemius) involvement as well. Muscle pathology identified numerous rimmed vacuoles with positive annexin A11, TDP-43 and p62 inclusions, but no inflammation. Central nervous system was also involved: two patients had FTD, but diffusion tensor imaging uncovered multiple areas of cerebral white matter damage in the whole group (including the corticospinal tracts and frontal subcortical regions). INTERPRETATION: These findings expand the phenotypic spectrum related to ANXA11. This gene should be considered the cause of a novel multisystem proteinopathy (MSP type 6), rather than just ALS. ANN NEUROL 2021;90:239-252.


Assuntos
Anexinas/genética , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Idoso , Sequência de Aminoácidos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Linhagem , Sequenciamento do Exoma/métodos
4.
Front Neurol ; 9: 1117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713518

RESUMO

Hereditary spastic paraplegias (HSP) are a large group of genetic diseases characterized by progressive degeneration of the long tracts of the spinal cord, namely the corticospinal tracts and dorsal columns. Genotypic and phenotypic heterogeneity is a hallmark of this group of diseases, which makes proper diagnosis and management often challenging. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool to assist in the exclusion of mimicking disorders and in the detailed phenotypic characterization. Some neuroradiological signs have been reported in specific subtypes of HSP and are therefore helpful to guide genetic testing/interpretation. In addition, advanced MRI techniques enable detection of subtle structural abnormalities not visible on routine scans in the spinal cord and brain of subjects with HSP. In particular, quantitative spinal cord morphometry and diffusion tensor imaging look promising tools to uncover the pathophysiology and to track progression of these diseases. In the current review article, we discuss the current use and future perspectives of MRI in the context of HSP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...