Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 621(7977): 105-111, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612501

RESUMO

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Assuntos
Aclimatação , Calor Extremo , Florestas , Fotossíntese , Árvores , Clima Tropical , Aclimatação/fisiologia , Austrália , Brasil , Calor Extremo/efeitos adversos , Aquecimento Global , Fotossíntese/fisiologia , Porto Rico , Desenvolvimento Sustentável/legislação & jurisprudência , Desenvolvimento Sustentável/tendências , Árvores/fisiologia , Folhas de Planta/fisiologia , Incerteza
2.
Proc Natl Acad Sci U S A ; 108(48): 19431-5, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22087005

RESUMO

We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange.


Assuntos
Ciclo do Carbono/fisiologia , Ecossistema , Metabolismo Energético/fisiologia , Agricultura Florestal/métodos , Árvores/fisiologia , Brasil , Solo/química , Clima Tropical , Água/análise , Tempo (Meteorologia) , Madeira
3.
Science ; 318(5850): 612, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17885095

RESUMO

Coupled climate-carbon cycle models suggest that Amazon forests are vulnerable to both long- and short-term droughts, but satellite observations showed a large-scale photosynthetic green-up in intact evergreen forests of the Amazon in response to a short, intense drought in 2005. These findings suggest that Amazon forests, although threatened by human-caused deforestation and fire and possibly by more severe long-term droughts, may be more resilient to climate changes than ecosystem models assume.


Assuntos
Desastres , Ecossistema , Fotossíntese , Chuva , Árvores , Clima Tropical , Bolívia , Brasil , Peru , Folhas de Planta/metabolismo , Estações do Ano , Árvores/metabolismo
4.
Science ; 302(5650): 1554-7, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-14645845

RESUMO

The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence interval: 0.0 to 2.0) megagrams of carbon per hectare per year. Biometric observations confirmed the net loss but imply that it is a transient effect of recent disturbance superimposed on long-term balance. Given that episodic disturbances are characteristic of old-growth forests, it is likely that carbon sequestration is lower than has been inferred from recent eddy covariance studies at undisturbed sites.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Ecossistema , Estações do Ano , Árvores , Brasil , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Intervalos de Confiança , Consumo de Oxigênio , Fotossíntese , Chuva , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...