Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Andrology ; 12(3): 655-673, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675929

RESUMO

BACKGROUND: Paroxetine, a selective serotonin reuptake inhibitor (SSRI) antidepressant, has caused male sexual dysfunction; however, the paroxetine mechanisms of action in testes are still unclear. OBJECTIVES: Paroxetine serotonergic effects in testes were evaluated, focusing on steroidogenesis and the correlation between macrophages population and possible TNF-α-derived oxidative stress. We also verified whether the changes are reversible following treatment interruption. MATERIALS AND METHODS: Adult rats received paroxetine (PG35 and PG65) or tap water (CG) for 35 days. PG65 was maintained without treatment for 30 more days. Intratesticular testosterone (IT), nitrite, and malondialdehyde concentrations were measured. To confirm serotonergic and estrogenic effects, Htr1b and Esr1 expressions were analyzed. The daily sperm production (DSP), frequency of abnormal seminiferous tubules (ST), SC number, ST area, and Leydig cells nuclear area (LCnu) were evaluated. TUNEL+ germ cells, M1 (CD68+ ), and M2 (Perls+ ) macrophages were quantified. 17ß-HSD7, CYP19A1, NDRG2, oxytocin, TNF-α, and iNOS were evaluated by immunoreactions. Oxytocin and NDRG2 protein levels as well as Tnfa mRNA expression were also analyzed. RESULTS: The Htr1b downregulation in testes confirmed the paroxetine serotonergic effect. The testicular sections showed abnormal ST frequency, ST atrophy and reduction of DSP, LCnu, SC number and Perls+ macrophages. TUNEL+ germ cells and LC were associated with strong NDRG2 immunoexpression. Paroxetine reduced IT levels and 17ß-HSD7 immunoexpression in parallel to increased CYP19A1, oxytocin, TNF-α and iNOS. Esr1 and Tnfa overexpression and increased number of CD68+ macrophages were also observed together with high nitrite and malondialdehyde levels. Most parameters were not recovered in PG65. CONCLUSIONS: Paroxetine serotonergic effect impairs LC steroidogenesis, via aromatization, increasing estrogen/testosterone ratio, which in turn upregulate NDRG2, promoting apoptosis, and impairing sperm production. Serotonin-estrogen pathways may be responsible for M2/M1 polarization, Tnfa upregulation, and induction of oxidative stress. The unrecovered testicular changes after treatment discontinuation are due to persistent paroxetine serotonin/estrogen effects.


Assuntos
Paroxetina , Testículo , Masculino , Ratos , Animais , Testículo/metabolismo , Paroxetina/farmacologia , Paroxetina/metabolismo , Serotonina , Fator de Necrose Tumoral alfa/metabolismo , Ocitocina , Nitritos/metabolismo , Nitritos/farmacologia , Sêmen , Testosterona/farmacologia , Estrogênios/metabolismo , Macrófagos , Malondialdeído/metabolismo , Malondialdeído/farmacologia
2.
Life Sci ; 315: 121329, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584913

RESUMO

Depressive disorders (DD) have affected millions of people worldwide. Venlafaxine, antidepressant of the class of serotonin and norepinephrine reuptake inhibitors, has been prescribed for the treatment of DD. In rat testes, venlafaxine induces testosterone (T) aromatization and increases estrogen levels. Aromatase is a key enzyme for the formation of estrogen in the epididymis, an essential organ for male fertility. We investigated the impact of serotonergic/noradrenergic venlafaxine effect on the epididymal cauda region, focusing on aromatase, V-ATPase and EGF epithelial immunoexpression, smooth muscle (SM) integrity and mast cells number (MCN). Male rats were distributed into control (CG; n = 10) and venlafaxine (VFG, n = 10) groups. VFG received 30 mg/kg b.w. of venlafaxine for 35 days. The epididymal cauda was processed for light and transmission electron microscopy (TEM). The expression of connexin 43 (Cx43) and estrogen alpha (Esr1), adrenergic (Adra1a) and serotonergic (Htr1b) receptors were analyzed. Clear cells (CCs) area, SM thickness, viable spermatozoa (VS) and MCN were evaluated. Apoptosis was confirmed by TUNEL and TEM. The following immunoreactions were performed: T, aromatase, T/aromatase co-localization, V-ATPase, EGF, Cx43 and PCNA. The increased Adra1a and reduced Htr1b expressions confirmed the noradrenergic and serotonergic venlafaxine effects, respectively, corroborating the increased MCN, apoptosis and atrophy of SM. In VFG, the epithelial EGF increased, explaining Cx43 overexpression and basal cells mitotic activity. T aromatization and Esr1 downregulation indicate high estrogen levels, explaining CCs hypertrophy and changes in the V-ATPase localization, corroborating VS reduction. Thus, in addition to serotonergic/noradrenergic effects, T/estrogen imbalance, induced by venlafaxine, impairs epididymal structure and function.


Assuntos
Epididimo , ATPases Vacuolares Próton-Translocadoras , Ratos , Masculino , Animais , Cloridrato de Venlafaxina/farmacologia , Cloridrato de Venlafaxina/metabolismo , Aromatase , Conexina 43/metabolismo , Mastócitos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/farmacologia , Estrogênios/farmacologia , Miócitos de Músculo Liso/metabolismo
3.
J Anat ; 239(1): 136-150, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713423

RESUMO

Submandibular gland (SMG) is responsive to androgens via androgen receptor (AR). We verified whether cimetidine induces androgenic dysfunction in SMG, and evaluated the structural integrity, cell death and immunoexpression of actin, EGF and V-ATPase in androgen-deficient SMG. Male rats received cimetidine (CMTG) and control animals (CG) received saline. Granular convoluted tubules (GCTs) diameter and number of acinar cell nuclei were evaluated. TUNEL and immunofluorescence reactions for detection of AR, testosterone, actin, EGF and V-ATPase were quantitatively analysed. In CG, testosterone immunolabelling was detected in acinar and ductal cells cytoplasm. AR-immunolabelled nuclei were observed in acinar cells whereas ductal cells showed AR-immunostained cytoplasm, indicating a non-genomic AR action. In CMTG, the weak testosterone and AR immunoexpression confirmed cimetidine-induced androgenic failure. A high cell death index was correlated with decreased number of acinar cells, GCTs diameter and EGF immunoexpression under androgenic dysfunction. Actin immunofluorescence decreased in the SMG cells, but an increased and diffuse cytoplasmic V-ATPase immunolabelling was observed in striated ducts, suggesting a disruption in the actin-dependent V-ATPase recycling due to androgenic failure. Our findings reinforce the androgenic role in the maintenance of SMG histophysiology, and point to a potential clinical use of cimetidine against androgen-dependent glandular tumour cells.


Assuntos
Cimetidina/uso terapêutico , Inibidores do Citocromo P-450 CYP1A2/uso terapêutico , Receptores Androgênicos/metabolismo , Glândula Submandibular/efeitos dos fármacos , Actinas/metabolismo , Animais , Cimetidina/farmacologia , Inibidores do Citocromo P-450 CYP1A2/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fator de Crescimento Epidérmico/metabolismo , Masculino , Ratos Sprague-Dawley , Glândula Submandibular/metabolismo , Testosterona/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...