Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 127: 109602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373509

RESUMO

This study evaluated the effect of vitamin D3 (VIT D3) supplementation on the enzymatic activities and density of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5-nucleotidase (E-5'-NT), adenosine deaminase (ADA), as well as the density of P2 × 7R, P2Y12R, A1R, A2AR receptors, IL-1ß, and oxidative parameters in type 2 diabetic rats. Forty male Wistar rats were fed a high carbohydrate-high fat diet (HCHFD) and received an intraperitoneal injection containing a single dose of streptozotocin (STZ, 35 mg/kg). Animals were divided into four groups: 1) control; 2) control/VIT D3 12 µg/kg; 3) diabetic; and 4) diabetic/VIT D3 12 µg/kg. Results show that VIT D3 reduced blood glucose, ATP hydrolysis, ADA activity, P2Y12R density (platelets), as well as ATP, ADP, and AMP hydrolysis and ADA activity (synaptosomes). Moreover, VIT D3 increased insulin levels and AMP hydrolysis (platelets) and improved antioxidant defense. Therefore, we suggest that VIT D3 treatment modulates hyperglycemia-induced changes via purinergic enzymes and receptor expression, consequently attenuating insulin homeostasis dysregulation in the diabetic state.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insulinas , Ratos , Masculino , Animais , Ratos Wistar , Colecalciferol/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Vitaminas , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Neurotoxicology ; 99: 217-225, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890558

RESUMO

Resistance physical exercise has neuroprotective and anti-inflammatory effects on many known diseases and, therefore, it has been increasingly explored. The way in which this type of exercise exerts these actions is still under investigation. In this study, we aimed to analyze the enzymes and components of the purinergic system involved in the inflammatory process triggered by the P2X7R. Rats were divided into four groups: control, exercise (EX), lipopolysaccharide (LPS), and EX + LPS. The animals in the exercise groups were subjected to a 12-week ladder-climbing resistance physical exercise and received LPS after the last session for sepsis induction. Enzymes activities (NTPDase, 5'-nucleotidase, and adenosine deaminase), purinoceptors' density (P2X7R, A1, and A2A), and the levels of inflammatory indicators (pyrin domain-containing protein 3 (NLRP3), Caspase-1, interleukin (IL)- 6, IL-1B, and tumor necrosis factor (TNF) -α) were measured in the cortex and hippocampus of the animals. The results show that exercise prevented (in the both structures) the increase of: 1) nucleoside-triphosphatase (NTPDase) and 5'-nucleotidase activities; 2) P2X7R density; 3) NLRP3 and Caspase-1; and 4) IL-6, IL-1ß, and TNF-α It is suggested that the purinergic system and the inflammatory pathway of P2X7R are of fundamental importance and influence the effects of resistance physical exercise on LPS-induced inflammation. Thus, the modulation of the P2X7R by resistance physical exercise offers new avenues for the management of inflammatory-related illnesses.


Assuntos
Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , 5'-Nucleotidase/metabolismo , Doenças Neuroinflamatórias , Hipocampo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Exercício Físico , Caspases/metabolismo , Receptores Purinérgicos P2X7/metabolismo
3.
J Nutr Biochem ; 115: 109280, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36796549

RESUMO

The present study evaluated the effect of caffeic acid (CA) on behavioral learning and memory tasks in the diabetic state. We also evaluated the effect of this phenolic acid on the enzymatic activities of acetylcholinesterase, ecto-nucleoside triphosphate diphosphohydrolase, ecto-5-nucleotidase and adenosine deaminase as well as on the density of M1R, α7nAChR, P2×7R, A1R, A2AR, and inflammatory parameters in the cortex and hippocampus of diabetic rats. Diabetes was induced by a single intraperitoneal dose of streptozotocin (55 mg/kg). The animals were divided into six groups: control/vehicle; control/CA 10 and 50 mg/kg; diabetic/vehicle; diabetic/CA 10 and 50 mg/kg, treated by gavage. The results showed that CA improved learning and memory deficits in diabetic rats. Also, CA reversed the increase in acetylcholinesterase and adenosine deaminase activities and reduced ATP and ADP hydrolysis. Moreover, CA increased the density of M1R, α7nAChR, and A1R receptors and reversed the increase in P2×7R and A2AR density in both evaluated structures. In addition, CA treatment attenuated the increase in NLRP3, caspase 1, and interleukin 1ß density in the diabetic state; moreover, it increased the density of interleukin-10 in the diabetic/CA 10 mg/kg group. The results indicated that CA treatment positively modified the activities of cholinergic and purinergic enzymes and the density of receptors, and improved the inflammatory parameters of diabetic animals. Thus, the outcomes suggest that this phenolic acid could improve the cognitive deficit linked to cholinergic and purinergic signaling in the diabetic state.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Ratos , Animais , Ratos Wistar , Adenosina Desaminase/metabolismo , Acetilcolinesterase/metabolismo , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Doenças Neuroinflamatórias , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Transdução de Sinais , Colinérgicos/uso terapêutico
4.
Purinergic Signal ; 17(3): 493-502, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302569

RESUMO

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi. CD affects people worldwide, primarily in tropical areas. The central nervous system (CNS) is an essential site for T. cruzi persistence during infection. The protozoan may pass through the blood-brain barrier and may cause motor and cognitive neuronal damage. Once in the CNS, T. cruzi triggers immune responses that the purinergic system can regulate. Treatment for CD is based on benznidazole (BNZ); however, this agent has negative side-effects and is toxic to the host. For this reason, we investigated whether resveratrol (RSV), a potent antioxidant and neuroprotective molecule, would modulate purinergic signaling and RSV alone or in combination with BNZ would prevent changes in purinergic signaling and oxidative damage caused by T. cruzi. We infected mice with T. cruzi and treated them with RSV or BNZ for 8 days. Increases in ATP and ADP hydrolysis by NTPDase in the total cortex of infected animals were observed. The treatment with RSV in infected group diminished ATP, ADP, and AMP hydrolysis compared to infected group. The combination of RSV + BNZ decreased AMP hydrolysis in infected animals compared to the INF group, exerting an anti-inflammatory effect. RSV acted as a neuroprotector, decreasing adenosine levels. Infected animals presented an increase of P2X7 and A2A density of purine receptors. RSV reduced P2X7 and A2A and increased A1 density receptors in infected animals. In addition, infected animals showed higher TBARS and reactive oxygen species (ROS) levels than control. RSV diminished ROS levels in infected mice, possibly due to antioxidant properties. In short, we conclude that resveratrol could act as a neuroprotective molecule, probably preventing inflammatory changes caused by infection by T. cruzi, even though the mice experienced high levels of parasitemia.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Doença de Chagas/metabolismo , Nitroimidazóis/administração & dosagem , Receptores Purinérgicos/biossíntese , Resveratrol/administração & dosagem , Doença Aguda , Animais , Antioxidantes/administração & dosagem , Córtex Cerebral/parasitologia , Doença de Chagas/tratamento farmacológico , Feminino , Expressão Gênica , Imunossupressores/administração & dosagem , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Receptores Purinérgicos/genética
5.
Life Sci ; 277: 119421, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33785337

RESUMO

Diabetes mellitus (DM) is a metabolic disorder characterized by a chronic hyperglycemia state, increased oxidative stress parameters, and inflammatory processes. AIMS: To evaluate the effect of caffeic acid (CA) on ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) and adenosine deaminase (ADA) enzymatic activity and expression of the A2A receptor of the purinergic system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymatic activity and expression of the α7nAChR receptor of the cholinergic system as well as inflammatory and oxidative parameters in diabetic rats. METHODS: Diabetes was induced by a single dose intraperitoneally of streptozotocin (STZ, 55 mg/kg). Animals were divided into six groups (n = 10): control/oil; control/CA 10 mg/kg; control/CA 50 mg/kg; diabetic/oil; diabetic/CA 10 mg/kg; and diabetic/CA 50 mg/kg treated for thirty days by gavage. RESULTS: CA treatment reduced ATP and ADP hydrolysis (lymphocytes) and ATP levels (serum), and reversed the increase in ADA and AChE (lymphocytes), BuChE (serum), and myeloperoxidase (MPO, plasma) activities in diabetic rats. CA treatment did not attenuate the increase in IL-1ß and IL-6 gene expression (lymphocytes) in the diabetic state; however, it increased IL-10 and A2A gene expression, regardless of the animals' condition (healthy or diabetic), and α7nAChR gene expression. Additionally, CA attenuated the increase in oxidative stress markers and reversed the decrease in antioxidant parameters of diabetic animals. CONCLUSION: Overall, our findings indicated that CA treatment positively modulated purinergic and cholinergic enzyme activities and receptor expression, and improved oxi-inflammatory parameters, thus suggesting that this phenolic acid could improve redox homeostasis dysregulation and purinergic and cholinergic signaling in the diabetic state.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Ácidos Cafeicos/farmacologia , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetilcolinesterase/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antioxidantes/farmacologia , Apirase/genética , Apirase/metabolismo , Butirilcolinesterase/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Wistar , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
6.
J Cell Biochem ; 120(3): 3232-3242, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230598

RESUMO

Sepsis is a generalized infection that involves alterations in inflammatory parameters, oxidant status, and purinergic signaling in many tissues. Physical exercise has emerged as a tool to prevent this disease because of its anti-inflammatory and antioxidant properties. Thus, in this study, we investigated the effects of physical exercise on preventing alterations in purinergic system components, oxidative stress, and inflammatory parameters in lipopolysaccharide (LPS)-induced sepsis in rats. Male Wistar rats were divided into four groups: control, exercise (EX), LPS, and EX+LPS. The resisted physical exercise was performed for 12 weeks on a ladder with 1 m height. After 72 hours of the last exercise session, the animals received 2.5 mg/kg of LPS for induction of sepsis, and after 24 hours, lungs and blood samples were collected for analysis. The results showed that the exercise protocol used was able to prevent, in septic animals: (1) the increase in body temperature; (2) the increase of lipid peroxidation and reactive species levels in the lung, (3) the increase in adenosine triphosphate levels in serum; (4) the change in the activity of the enzymes ectonucleotidases in lymphocytes, partially; (5) the change in the density of purinergic enzymes and receptors in the lung, and (6) the increase of IL-6 and IL-1ß gene expression. Our results revealed the involvement of purinergic signaling and oxidative damage in the mechanisms by which exercise prevents sepsis aggravations. Therefore, the regular practice of physical exercise is encouraged as a better way to prepare the body against sepsis complications.


Assuntos
Lipopolissacarídeos/toxicidade , Condicionamento Físico Animal/fisiologia , Sepse/induzido quimicamente , Sepse/prevenção & controle , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/metabolismo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA