Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(31): e2302046, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605325

RESUMO

Immunotherapies targeting immune checkpoints have revolutionized cancer treatment by normalizing the immunosuppressive microenvironment of tumors and reducing adverse effects on the immune system. Indoleamine 2,3-dioxygenase (IDO) inhibitors have garnered attention as a promising therapeutic agent for cancer. However, their application alone has shown limited clinical benefits. Cabozantinib, a multitarget tyrosine kinase inhibitor, holds immunomodulatory potential by promoting infiltration and activation of effector cells and inhibiting suppressive immune cells. Despite its potential, cabozantinib as a monotherapy has shown limited efficacy in terms of objective response rate. In this study, IDO-IN-7 and cabozantinib are coencapsulated into liposomes to enhance tumor accumulation and minimize adverse effects. The liposomal combination exhibits potent cytotoxicity and inhibits the function of IDO enzyme. Furthermore, the dual-targeted treatment effectively inhibits tumor development and reverses the suppressive tumor microenvironment by regulating both adaptive and innate branch of immune system. This is evidenced by pronounced infiltration of T cells and B cells, a decrease of regulatory T lymphocytes, a shift to a proinflammatory phenotype of tumor-associated macrophages, and increases levels of neutrophils. This is the first developed of a liposome-delivered combination of IDO inhibitors and cabozantinib, and holds great potential for future clinical application as a promising anticancer strategy.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunomodulação , Imunoterapia , Anilidas/farmacologia , Anilidas/uso terapêutico , Neoplasias/tratamento farmacológico , Lipossomos/farmacologia
2.
J Control Release ; 353: 490-506, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460179

RESUMO

Therapeutic cancer drug efficacy can be limited by insufficient tumor penetration, rapid clearance, systemic toxicity and (acquired) drug resistance. The poor therapeutic index due to inefficient drug penetration and rapid drug clearance and toxicity can be improved by using a liposomal platform. Drug resistance for instance against pemetrexed, can be reduced by combination with docetaxel. Here, we developed a specific liposomal formulation to simultaneously deliver docetaxel and pemetrexed to enhance efficacy and safety. Hydrophobic docetaxel and hydrophilic pemetrexed were co-encapsulated into pH-sensitive liposomes using a thin-film hydration method with high efficiency. The physicochemical properties, toxicity, and immunological effects of liposomes were examined in vitro. Biodistribution, anti-tumor efficacy, and systemic immune response were evaluated in vivo in combination with PD-L1 immune checkpoint therapy using two murine colon cancer models. In cellular experiments, the liposomes exhibited strong cytotoxicity and induced immunogenic cell death. In vivo, the treatment with the liposome-based drug combination inhibited tumor development and stimulated immune responses. Liposomal encapsulation significantly reduced systemic toxicity compared to the delivery of the free drug. Tumor control was strongly enhanced when combined with anti-PDL1 immunotherapy in immunocompetent mice carrying syngeneic MC38 or CT26 colon tumors. We showed that treatment with liposome-mediated chemotherapy of docetaxel and pemetrexed combined with anti-PD-L1 immunotherapy is a promising strategy for the treatment of colon cancers.


Assuntos
Neoplasias do Colo , Lipossomos , Animais , Camundongos , Lipossomos/química , Docetaxel/uso terapêutico , Pemetrexede/uso terapêutico , Distribuição Tecidual , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
3.
Pharmaceutics ; 13(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575546

RESUMO

Photodynamic therapy (PDT) has shown encouraging but limited clinical efficacy when used as a standalone treatment against solid tumors. Conversely, a limitation for immunotherapeutic efficacy is related to the immunosuppressive state observed in large, advanced tumors. In the present study, we employ a strategy, in which we use a combination of PDT and immunostimulatory nanoparticles (NPs), consisting of poly(lactic-co-glycolic) acid (PLGA)-polyethylene glycol (PEG) particles, loaded with the Toll-like receptor 3 (TLR3) agonist poly(I:C), the TLR7/8 agonist R848, the lymphocyte-attracting chemokine, and macrophage inflammatory protein 3α (MIP3α). The combination provoked strong anti-tumor responses, including an abscopal effects, in three clinically relevant murine models of cancer: MC38 (colorectal), CT26 (colorectal), and TC-1 (human papillomavirus 16-induced). We show that the local and distal anti-tumor effects depended on the presence of CD8+ T cells. The combination elicited tumor-specific oncoviral- or neoepitope-directed CD8+ T cells immune responses against the respective tumors, providing evidence that PDT can be used as an in situ vaccination strategy against cancer (neo)epitopes. Finally, we show that the treatment alters the tumor microenvironment in tumor-bearing mice, from cold (immunosuppressed) to hot (pro-inflammatory), based on greater neutrophil infiltration and higher levels of inflammatory myeloid and CD8+ T cells, compared to untreated mice. Together, our results provide a rationale for combining PDT with immunostimulatory NPs for the treatment of solid tumors.

4.
Pharmaceutics ; 13(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562356

RESUMO

Polymeric nanoparticles (NPs) find many uses in nanomedicine, from drug delivery to imaging. In this regard, poly (lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG) particles are the most widely applied types of nano-systems due to their biocompatibility and biodegradability. Here we developed novel fluorinated polymeric NPs as vectors for multi-modal nanoprobes. This approach involved modifying polymeric NPs with trifluoroacetamide (TFA) and loading them with a near-infrared (NIR) dye for different imaging modalities, such as magnetic resonance imaging (MRI) and optical imaging. The PLGA-PEG-TFA NPs generated were characterized in vitro using the C28/I2 human chondrocyte cell line and in vivo in a mouse model of osteoarthritis (OA). The NPs were well absorbed, as confirmed by confocal microscopy, and were non-toxic to cells. To test the NPs as a drug delivery system for contrast agents of OA, the nanomaterial was administered via the intra-articular (IA) administration method. The dye-loaded NPs were injected in the knee joint and then visualized and tracked in vivo by fluorine-19 nuclear magnetic resonance and fluorescence imaging. Here, we describe the development of novel intrinsically fluorinated polymeric NPs modality that can be used in various molecular imaging techniques to visualize and track OA treatments and their potential use in clinical trials.

5.
Pharmaceutics ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158166

RESUMO

Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed.

6.
Theranostics ; 9(22): 6485-6500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588231

RESUMO

Chemoimmunotherapy is an emerging combinatorial modality for the treatment of cancers resistant to common first-line therapies, such as chemotherapy and checkpoint blockade immunotherapy. We used biodegradable nanoparticles as delivery vehicles for local, slow and sustained release of doxorubicin, two immune adjuvants and one chemokine for the treatment of resistant solid tumors. Methods: Bio-compatible poly(lactic-co-glycolic acid)-PEG nanoparticles were synthesized in an oil/water emulsion, using a solvent evaporation-extraction method. The nanoparticles were loaded with a NIR-dye for theranostic purposes, doxorubicin cytostatic agent, poly (I:C) and R848 immune adjuvants and CCL20 chemokine. After physicochemical and in vitro characterization the nanoparticles therapeutic efficacy were carried-out on established, highly aggressive and treatment resistant TC-1 lung carcinoma and MC-38 colon adenocarcinoma models in vivo. Results: The yielded nanoparticles average size was 180 nm and -14 mV surface charge. The combined treatment with all compounds was significantly superior than separate compounds and the compounds nanoparticle encapsulation was required for effective tumor control in vivo. The mechanistic studies confirmed strong induction of circulating cancer specific T cells upon combined treatment in blood. Analysis of the tumor microenvironment revealed a significant increase of infiltrating leukocytes upon treatment. Conclusion: The multi-drug loaded nanoparticles mediated delivery of chemoimmunotherapy exhibited excellent therapeutic efficacy gain on two treatment resistant cancer models and is a potent candidate strategy to improve cancer therapy of solid tumors resistant to first-line therapies.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Nanopartículas/administração & dosagem , Adenocarcinoma/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiocina CCL20/administração & dosagem , Quimiotaxia/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Doxorrubicina/farmacocinética , Feminino , Imidazóis/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos C57BL , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microambiente Tumoral/efeitos dos fármacos
7.
Expert Opin Drug Metab Toxicol ; 11(5): 703-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25633410

RESUMO

INTRODUCTION: Small molecule tyrosine and serine-threonine kinase inhibitors (TKIs and STKIs) are emerging drugs that interfere with downstream signaling pathways involved in cancer proliferation, invasion, metastasis and angiogenesis. The understanding of their pharmacokinetics, the identification of their transporters and the modulating activity exerted on transporters is pivotal to predict therapy efficacy and to avoid unwarranted drug treatment combinations. AREAS COVERED: Experimental or in silico data were collected and summarized on TKIs and STKIs physico-chemical properties, which influence their transport, metabolism and efficacy, and TKIs and STKIs as influx transporter substrates and inhibitors. In addition, the uptake by tumor cell influx transporters and some factors in the tumor microenvironment affecting the uptake of TKIs and STKIs by cancer cells are briefly covered. EXPERT OPINION: Membrane transporters play an important role in the pharmacokinetics and hence the efficacy of anticancer drugs, including TKIs and STKIs. These drugs are substrates and inhibitors of various transporters. Drug resistance may be bypassed not only by identifying the proper transporter but also by selective combinations, which may either downregulate or increase transporter activity. However, care has to be taken because this profile might be disease, drug and patient specific.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Transporte Biológico , Resistencia a Medicamentos Antineoplásicos , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...