Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37237904

RESUMO

Heavy episodic ethanol (EtOH) consumption is a typical pattern, especially among younger people. The therapeutic effect of exercise on EtOH damage has not yet been fully elucidated. Therefore, this study aims to investigate whether moderate exercise can reduce the damage generated by ethanol consumption in salivary glands and saliva. Thus, 32 male Wistar rats were divided into four groups: control (sedentary animals treated with water); training (trained animals treated with EtOH); EtOH (sedentary animals treated with EtOH); and EtOH + training (trained animals treated with ethanol). EtOH was administered to the animals at a dose of 3 g/kg/day at a concentration of 20% w/v for three consecutive days per week via intragastric gavage. The training was performed on a treadmill for five successive days. At the end of the 4-week experimental protocol, the animals were euthanized, and salivary glands and saliva were collected for oxidative biochemistry analysis. Our results showed that EtOH consumption generated changes in the oxidative biochemistry of the salivary glands and saliva. Thus, it was possible to conclude that moderate physical exercise can significantly recover antioxidant activity, reducing the damage generated by EtOH.

2.
Antioxidants (Basel) ; 12(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237917

RESUMO

Binge drinking is the most frequent consumption pattern among young adults and remarkably changes the central nervous system; thus, research on strategies to protect it is relevant. This study aimed to investigate the detrimental effects of binge-like EtOH intake on the spinal cord of male rats and the potential neuroprotective effects provided by moderate-intensity aerobic physical training. Male Wistar rats were distributed into the 'control group', 'training group', 'EtOH group', and 'training + EtOH'. The physical training protocol consisted of daily 30-min exercise on a treadmill for 5 consecutive days followed by 2 days off during 4 weeks. After the fifth day of each week, distilled water ('control group' and 'training group') or 3 g/kg of EtOH diluted at 20% w/v ('EtOH group' and 'training + EtOH group') was administered for 3 consecutive days through intragastric gavage to simulate compulsive consumption. Spinal cord samples were collected for oxidative biochemistry and morphometric analyses. The binge-like EtOH intake induced oxidative and tissue damage by decreasing reduced glutathione (GSH) levels, increasing lipid peroxidation (LPO), and reducing motor neurons (MN) density in the cervical segment. Even under EtOH exposure, physical training maintained GSH levels, reduced LPO, and prevented MN reduction at the cervical segment. Physical training is a non-pharmacological strategy to neuroprotect the spinal cord against oxidative damage induced by binge-like EtOH intake.

3.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409136

RESUMO

Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 µg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Regulação para Baixo , Feminino , Humanos , Exposição Materna/efeitos adversos , Mercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Proteína Básica da Mielina/metabolismo , Gravidez , Ratos , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...