Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475994

RESUMO

Chromosome structure in both interphase and M-phase cells is strongly influenced by the action of the cohesin and condensin protein complexes. The cohesin complex tethers the identical copies of each chromosome, called sister chromatids, together following DNA replication and promotes normal interphase chromosome structure and gene expression. In contrast, condensin is active largely in M phase and promotes the compaction of individual chromosomes. The Xenopus egg extract system is uniquely suited to analyze the functions of both complexes. Egg extracts, in which the cell cycle state can be manipulated, contain stockpiles of nuclear proteins (including condensin and cohesin) sufficient for the assembly of thousands of nuclei per microliter. Extract prepared from unfertilized eggs is arrested by the presence of cytostatic factor (CSF) in a state with high levels of M-phase kinase activity, but can be stimulated to enter interphase, in which DNA replication occurs spontaneously. For cohesion assays, demembranated sperm nuclei are incubated in interphase extract, where they undergo rapid and synchronous DNA replication and cohesion establishment through the recruitment of proteins and other factors (e.g., nucleotides) from the extract. Sister chromatid cohesion is assessed by then driving the extract into M phase by the addition of fresh CSF-arrested extract. In contrast, because chromosome condensation occurs spontaneously in M-phase extracts, sperm nuclei are added directly to CSF extracts to assay condensation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Misturas Complexas/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Xenopus , Zigoto , Animais , Coesinas
2.
Front Microbiol ; 9: 3198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723463

RESUMO

Klebsiella pneumoniae is an important opportunistic pathogen that commonly causes nosocomial infections and contributes to substantial morbidity and mortality. We sought to investigate the antibiotic resistance profile, pathogenic potential and the clonal relationships between K. pneumoniae (n = 25) isolated from patients and sources at a tertiary care hospital's intensive care units (ICUs) in the northern region of Brazil. Most of K. pneumoniae isolates (n = 21, 84%) were classified as multidrug resistant (MDR) with high-level resistance to ß-lactams, aminoglycosides, quinolones, tigecycline, and colistin. All the 25 isolates presented extended-spectrum beta-lactamase-producing (ESBL), including carbapenemase producers, and carried the bla KPC (100%), bla TEM (100%), bla SHV variants (n = 24, 96%), bla OXA-1 group (n = 21, 84%) and bla CTX-M-1 group (n = 18, 72%) genes. The K2 serotype was found in 4% (n = 1) of the isolates, and the K1 was not detected. The virulence-associated genes found among the 25 isolates were mrkD (n = 24, 96%), fimH-1 (n = 22, 88%), entB (100%), iutA (n = 10, 40%), ybtS (n = 15, 60%). The genes related with efflux pumps and outer membrane porins found were AcrAB (100%), tolC (n = 24, 96%), mdtK (n = 22, 88%), OmpK35 (n = 15, 60%), and OmpK36 (n = 7, 28%). ERIC-PCR was employed to determine the clonal relationship between the different isolated strains. The obtained ERIC-PCR patterns revealed that the similarity between isolates was above 70%. To determine the sequence types (STs) a multilocus sequence typing (MLST) assay was used. The results indicated the presence of high-risk international clones among the isolates. In our study, the wide variety of MDR K. pneumoniae harboring ß-lactams and virulence genes strongly suggest a necessity for the implementation of effective strategies to prevent and control the spread of antibiotic resistant infections.

3.
Proc Natl Acad Sci U S A ; 114(37): 9906-9911, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847955

RESUMO

Sister chromatids are tethered together by the cohesin complex from the time they are made until their separation at anaphase. The ability of cohesin to tether sister chromatids together depends on acetylation of its Smc3 subunit by members of the Eco1 family of cohesin acetyltransferases. Vertebrates express two orthologs of Eco1, called Esco1 and Esco2, both of which are capable of modifying Smc3, but their relative contributions to sister chromatid cohesion are unknown. We therefore set out to determine the precise contributions of Esco1 and Esco2 to cohesion in vertebrate cells. Here we show that cohesion establishment is critically dependent upon Esco2. Although most Smc3 acetylation is Esco1 dependent, inactivation of the ESCO1 gene has little effect on mitotic cohesion. The unique ability of Esco2 to promote cohesion is mediated by sequences in the N terminus of the protein. We propose that Esco1-dependent modification of Smc3 regulates almost exclusively the noncohesive activities of cohesin, such as DNA repair, transcriptional control, chromosome loop formation, and/or stabilization. Collectively, our data indicate that Esco1 and Esco2 contribute to distinct and separable activities of cohesin in vertebrate cells.


Assuntos
Acetiltransferases/metabolismo , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Acetilação , Acetiltransferases/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Replicação do DNA/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Proteínas Nucleares/metabolismo , Coesinas
4.
J Cell Sci ; 130(2): 429-443, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909244

RESUMO

The HIV accessory protein Nef is a major determinant of viral pathogenesis that facilitates viral particle release, prevents viral antigen presentation and increases infectivity of new virus particles. These functions of Nef involve its ability to remove specific host proteins from the surface of infected cells, including the CD4 receptor. Nef binds to the adaptor protein 2 (AP-2) and CD4 in clathrin-coated pits, forcing CD4 internalization and its subsequent targeting to lysosomes. Herein, we report that this lysosomal targeting requires a variant of AP-1 containing isoform 2 of γ-adaptin (AP1G2, hereafter γ2). Depletion of the γ2 or µ1A (AP1M1) subunits of AP-1, but not of γ1 (AP1G1), precludes Nef-mediated lysosomal degradation of CD4. In γ2-depleted cells, CD4 internalized by Nef accumulates in early endosomes and this alleviates CD4 removal from the cell surface. Depletion of γ2 also hinders EGFR-EGF-complex targeting to lysosomes, an effect that is not observed upon γ1 depletion. Taken together, our data provide evidence that the presence of γ1 or γ2 subunits delineates two distinct variants of AP-1 complexes, with different functions in protein sorting.


Assuntos
Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Antígenos CD4/metabolismo , Regulação para Baixo , HIV-1/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Transporte Proteico , Proteólise , Técnicas do Sistema de Duplo-Híbrido
5.
J Biol Chem ; 289(40): 27744-56, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25118280

RESUMO

Nef is an accessory protein of human immunodeficiency viruses that promotes viral replication and progression to AIDS through interference with various host trafficking and signaling pathways. A key function of Nef is the down-regulation of the coreceptor CD4 from the surface of the host cells. Nef-induced CD4 down-regulation involves at least two independent steps as follows: acceleration of CD4 endocytosis by a clathrin/AP-2-dependent pathway and targeting of internalized CD4 to multivesicular bodies (MVBs) for eventual degradation in lysosomes. In a previous work, we found that CD4 targeting to the MVB pathway was independent of CD4 ubiquitination. Here, we report that this targeting depends on a direct interaction of Nef with Alix/AIP1, a protein associated with the endosomal sorting complexes required for transport (ESCRT) machinery that assists with cargo recruitment and intraluminal vesicle formation in MVBs. We show that Nef interacts with both the Bro1 and V domains of Alix. Depletion of Alix or overexpression of the Alix V domain impairs lysosomal degradation of CD4 induced by Nef. In contrast, the V domain overexpression does not prevent cell surface removal of CD4 by Nef or protein targeting to the canonical ubiquitination-dependent MVB pathway. We also show that the Nef-Alix interaction occurs in late endosomes that are enriched in internalized CD4. Together, our results indicate that Alix functions as an adaptor for the ESCRT-dependent, ubiquitin-independent targeting of CD4 to the MVB pathway induced by Nef.


Assuntos
Antígenos CD4/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Lisossomos/enzimologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Antígenos CD4/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/genética , Endossomos/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Lisossomos/genética , Ligação Proteica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA