Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 322: 121660, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011876

RESUMO

AIMS: Investigate whether the coadministration of olanzapine exacerbates the diabetogenic effects of dexamethasone, two agents used in the antiemetic cocktails indicated to mitigate the adverse effects of chemotherapy. MAIN METHODS: Adult Wistar rats (both sexes) were treated daily with dexamethasone (1 mg/kg, body mass (b.m.), intraperitoneal (i.p.)) with or without olanzapine (10 mg/kg, b.m., orogastric (o.g.)) for 5 consecutive days. During and at the end of the treatment, we evaluated biometric data and parameters involving glucose and lipid metabolism. KEY FINDINGS: Dexamethasone treatment resulted in glucose and lipid intolerance, higher plasma insulin and triacylglycerol levels, higher content of hepatic glycogen and fat, and higher islet mass in both sexes. These changes were not exacerbated by concomitant treatment with olanzapine. However, coadministration of olanzapine worsened the weight loss and plasma total cholesterol in males, while in females resulted in lethargy, higher plasma total cholesterol, and higher hepatic triacylglycerol release. SIGNIFICANCE: Coadministration of olanzapine does not exacerbate any diabetogenic dexamethasone effect on glucose metabolism and exerts a minor impact on the lipid homeostasis of rats. Our data favor the addition of olanzapine in the antiemetic cocktail considering the low incidence of metabolic adverse effects for the period and dosage analyzed in male and female rats.


Assuntos
Antieméticos , Antipsicóticos , Diabetes Mellitus , Ratos , Masculino , Feminino , Animais , Olanzapina/toxicidade , Ratos Wistar , Glicemia/metabolismo , Glucose/metabolismo , Triglicerídeos , Dexametasona/toxicidade , Colesterol , Benzodiazepinas/farmacologia , Antipsicóticos/farmacologia
2.
Environ Pollut ; 316(Pt 2): 120633, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370973

RESUMO

Understanding the individual and global impact of pesticides on human physiology and the different stages of life is still a challenge in environmental health. We analyzed here whether administration of the organophosphate insecticide malathion before pregnancy could affect glucose homeostasis during pregnancy and, in addition, generate possible later consequences in mothers and offspring. For this, adult Wistar rats were allocated into two groups and were treated daily (intragastric) with malathion (14 or 140 mg/kg, body mass (bm)) for 21-25 days. Corn oil was used as vehicle in the Control group. Subgroups were defined based on the absence (nulliparous) or presence (pregnant) of a copulatory plug. Pregnant rats were followed by an additional period of 2 months after the term (post-term), without continuing malathion treatment. Fetuses and adult offspring of males and females were also evaluated. We ran an additional experimental design with rats exposed to malathion before pregnancy at a dose of 0.1 mg/kg bm. Malathion exposure resulted in glucose intolerance in the mothers during pregnancy and post-term period, regardless of the exposure dose. This was accompanied by increased visceral adipose tissue mass, dyslipidemia, unchanged pancreatic ß-cell mass, and varying insulin responses to glucose in vivo. The number of total newborns and birthweight was not affected by malathion exposure. Adult offspring from both sexes also became glucose-intolerant, regardless of the pesticide dose their dams were exposed to. This alteration could be associated with changes at the epigenomic level, as reduced hepatic mRNA content of DNA methylases and demethylases was found. We demonstrated that periconceptional exposure to malathion with doses aiming to mimic from work environment to indirect contamination predisposes progenitors and offspring rats to glucose intolerance. Thus, we conclude that subchronic exposure to malathion is a risk factor for gestational diabetes and prediabetes later in life.


Assuntos
Intolerância à Glucose , Efeitos Tardios da Exposição Pré-Natal , Recém-Nascido , Gravidez , Masculino , Feminino , Ratos , Animais , Humanos , Malation/toxicidade , Glicemia , Ratos Wistar , Homeostase , Glucose , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
3.
Front Neurosci ; 12: 1020, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686986

RESUMO

There is a mutual relationship between metabolic and neurodegenerative diseases. However, the causal relationship in this crosstalk is unclear and whether Parkinson's disease (PD) causes a posterior impact on metabolism remains unknown. Considering that, this study aimed to evaluate the appearance of possible changes in metabolic homeostasis due to 6-hydroxydopamine (6-OHDA) administration, a neurotoxin that damage dopaminergic neurons leading to motor impairments that resemble the ones observed in PD. For this, male Wistar rats received bilateral 6-OHDA administration in the dorsolateral striatum, and the motor and metabolic outcomes were assessed at 7, 21, or 35 days post-surgical procedure. Dexamethasone, a diabetogenic glucocorticoid (GC), was intraperitoneally administered in the last 6 days to challenge the metabolism and reveal possible metabolic vulnerabilities caused by 6-OHDA. Controls received only vehicles. The 6-OHDA-treated rats displayed a significant decrease in locomotor activity, exploratory behavior, and motor coordination 7 and 35 days after neurotoxin administration. These motor impairments paralleled with no significant alteration in body mass, food intake, glucose tolerance, insulin sensitivity, and biochemical parameters (plasma insulin, triacylglycerol, and total cholesterol levels) until the end of the experimental protocol on days 35-38 post-6-OHDA administration. Moreover, hepatic glycogen and fat content, as well as the endocrine pancreas mass, were not altered in rats treated with 6-OHDA at the day of euthanasia (38th day after neurotoxin administration). None of the diabetogenic effects caused by dexamethasone were exacerbated in rats previously treated with 6-OHDA. Thus, we conclude that bilateral 6-OHDA administration in the striatum causes motor deficits in rats with no impact on glucose and lipid homeostasis and does not exacerbate the adverse effects caused by excess GC. These observations indicate that neurodegeneration of dopaminergic circuits in the 6-OHDA rats does not affect the metabolic outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...