Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118025, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38458342

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Commiphora leptophloeos (Mart.) J.B. Gillet (Burseraceae) is a medicinal plant native to Brazil, popularly known as "imburana". Homemade leaf decoction and maceration were used to treat general inflammatory problems in the Brazilian Northeast population. Our previous research confirmed the anti-inflammatory activity of the C. leptophloeos hydroalcoholic leaf extract. AIM OF THE STUDY: Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disorder of the gut with no ideal treatment to maintain the remissive status. This work aimed to characterize the phytochemical composition and physicochemical properties of the C. leptophloeos hydroalcoholic leaf extract and its efficacy in chemopreventive and immunomodulatory responses in inflammatory bowel disease in non-clinical models. MATERIALS AND METHODS: Mass spectrometry and physicochemical tests determined the phytochemical profile and physicochemical characteristics of the Commiphora leptophloeos (CL) extract. The chemopreventive and immunomodulatory effects of CL extract (50 and 125 µg/mL) were evaluated in vitro in the RAW 264.7 lipopolysaccharide (LPS) induced cell assay and in vivo in the model of intestinal inflammation induced by 2,4-Dinitrobenzenesulfonic acid (DNBS) in mice when they were treated with CL extract by intragastric gavage (i.g.) at doses of 300, 400 and 500 mg/kg. RESULTS: Phytochemical annotation of CL extract showed a complex phenolic composition, characterized as phenolic acids and flavonoids, and satisfactory physicochemical characteristics. In addition, CL extract maintained the viability of RAW macrophages, reduced ROS and NO production, and negatively regulated COX-2, iNOS, TNF-α, IL-1ß, IL-6, and IL-17 (p < 0.05). In the intestinal inflammation model, CL extract was able to downregulate NF-κB p65/COX-2, mTOR, iNOS, IL-17, decrease levels of malondialdehyde and myeloperoxidase and cytokines TNF-α, IL-1ß and IL-6 (p < 0.05). CONCLUSION: Based on these findings, CL extract reduced inflammatory responses by down-regulating pro-inflammatory markers in macrophages induced by LPS and DNBS-induced colitis in mice through NF-κB p65/COX-2 signaling. CL leaf extract requires further investigation as a candidate for treating inflammatory bowel disease.


Assuntos
Dinitrofluorbenzeno/análogos & derivados , Doenças Inflamatórias Intestinais , Extratos Vegetais , Camundongos , Animais , Extratos Vegetais/efeitos adversos , Commiphora , Interleucina-17 , Fator de Necrose Tumoral alfa , NF-kappa B , Interleucina-6 , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico
2.
Biomater Adv ; 151: 213456, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196459

RESUMO

Cell-membrane-coated biomimetic nanoparticles (NPs) have attracted great attention due to their prolonged circulation time, immune escape mechanisms and homotypic targeting properties. Biomimetic nanosystems from different types of cell -membranes (CMs) can perform increasingly complex tasks in dynamic biological environments thanks to specific proteins and other properties inherited from the source cells. Herein, we coated doxorubicin (DOX)-loaded reduction-sensitive chitosan (CS) NPs with 4T1 cancer cell -membranes (CCMs), red blood cell -membranes (RBCMs) and hybrid erythrocyte-cancer membranes (RBC-4T1CMs) to enhance the delivery of DOX to breast cancer cells. The physicochemical properties (size, zeta potential and morphology) of the resulting RBC@DOX/CS-NPs, 4T1@DOX/CS-NPs and RBC-4T1@DOX/CS-NPs, as well as their cytotoxic effect and cellular NP uptake in vitro were thoroughly characterized. The anti-cancer therapeutic efficacy of the NPs was evaluated using the orthotopic 4T1 breast cancer model in vivo. The experimental results showed that DOX/CS-NPs had a DOX-loading capacity of 71.76 ± 0.87 %, and that coating of DOX/CS-NPs with 4T1CM significantly increased the NP uptake and cytotoxic effect in breast cancer cells. Interestingly, by optimizing the ratio of RBCMs:4T1CMs, it was possible to increase the homotypic targeting properties towards breast cancer cells. Moreover, in vivo tumor studies showed that compared to control DOX/CS-NPs and free DOX, both 4T1@DOX/CS-NPs and RBC@DOX/CS-NPs significantly inhibited tumor growth and metastasis. However, the effect of 4T1@DOX/CS-NPs was more prominent. Moreover, CM-coating reduced the uptake of NPs by macrophages and led to rapid clearance from the liver and lungs in vivo, compared to control NPs. Our results suggest that specific self-recognition to source cells resulting in homotypic targeting increased the uptake and the cytotoxic capacity of 4T1@DOX/CS-NPs by breast cancer cells in vitro and in vivo. In conclusion, tumor-disguised CM-coated DOX/CS-NPs exhibited tumor homotypic targeting and anti-cancer properties, and were superior over targeting with RBC-CM or RBC-4T1 hybrid membranes, suggesting that the presence of 4T1-CM is critical for treatment outcome.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Nanopartículas/química , Membrana Eritrocítica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...