Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 119: 111638, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321676

RESUMO

Different crystalline phases in sputtered TiO2 films were tailored to determine their surface and electrochemical properties, protein adsorption and apatite layer formation on titanium-based implant material. Deposition conditions of two TiO2 crystalline phases (anatase and rutile) were established and then grown on commercially pure titanium (cpTi) by magnetron sputtering to obtain the following groups: A-TiO2 (anatase), M-TiO2 (anatase and rutile mixture), R-TiO2 (rutile). Non-treated commercially pure titanium (cpTi) was used as a control. Surfaces characterization included: chemical composition, topography, crystalline phase and surface free energy (SFE). Electrochemical tests were conducted using simulated body fluid (SBF). Albumin adsorption was measured by bicinchoninic acid method. Hydroxyapatite (HA) precipitation was evaluated after 28 days of immersion in SBF. MC3T3-E1 cell adhesion, morphology and spreading onto the experimental surfaces were evaluated by scanning electron microscopy. Sputtering treatment modified cpTi topography by increasing its surface roughness. CpTi and M-TiO2 groups presented the greatest SFE. In general, TiO2 films displayed improved electrochemical behavior compared to cpTi, with M-TiO2 featuring the highest polarization resistance. Rutile phase exhibited a greater influence on decreasing the current density and corrosion rate, while the presence of a bi-phasic polycrystalline condition displayed a more stable passive behavior. M-TiO2 featured increased albumin adsorption. HA morphology was dependent on the crystalline phase, being more evident in the bi-phasic group. Furthermore, M-TiO2 displayed normal cell adhesion and morphology. The combination of anatase and rutile structures to generate TiO2 films is a promising strategy to improve biomedical implants properties including greater corrosion protection, higher protein adsorption, bioactivity and non-cytotoxicity effect.


Assuntos
Próteses e Implantes , Titânio , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
2.
Front Chem ; 7: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788340

RESUMO

In this work, niobium oxide films were deposited by reactive magnetron sputtering under different oxygen flow rate and applied as electron transport layer in perovskite solar cells. It was found that the deposition made using 3.5 sccm of oxygen flow resulted in films with better electrical properties which helped the extraction of the photogenerated electrons to the external circuit, improving the Jsc and consequently the device efficiency. In addition, by photoluminescence measurements, we found a better charge transfer from perovskite to TiO2/niobium oxide film deposited at 3.5 sccm of oxygen flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...