Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 41(4): 1206-1216, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34907850

RESUMO

Ouratea fieldingiana, popularly known as batiputá, is a tree species easily found in the coastal part of northeastern Brazil. Its leaves are rich in biflavonoids, its major compound being amentoflavone. Biflavonoids are well studied due to their high antioxidant capacity. Alzheimer's disease (AD) is a disease characterized by the progressive loss of neurons. Currently, the pharmacological treatment of AD has four drugs: donepezil, galantamine, rivastigmine and memantine. Where these drugs, with the exception of memantine, are inhibitors of acetylcholinesterase, thus inhibiting the enzyme that destroys acetylcholine, thus increasing the availability of this neurotransmitter. This article aims to determine in vitro and in silico the antioxidant and anticholinesterase action of amentoflavone isolated from the leaves of Ouratea fieldingiana. The antioxidant capacity of amentoflavone was evaluated using the DPPH* free radical scavenging method, with an IC50 of 5.73 ± 0.08 µg/mL. The antiradical properties of the molecule were also studied in silico through several HAT, SET-PT and SPLET mechanisms via DFT M06-2X/6-311++G(d,p). It was found that in the hydrogen atom transfer mechanism (HAT) the best trend was obtained as an anti-radical mechanism. Amentoflavone has the ability to inhibit acetylcholinesterase when tested in vitro, having an IC50 of 8.68 ± 0.73 µg/mL, corroborating its effect in the in silico test, presenting four strong covalent hydrogen bonds for having a bond length up to 2.5 Å. Thus, amentoflavone is an important target for further testing against Alzheimer's disease. Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Alzheimer , Biflavonoides , Ochnaceae , Inibidores da Colinesterase/farmacologia , Antioxidantes/química , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Memantina/uso terapêutico
2.
Phys Chem Chem Phys ; 24(8): 5052-5069, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35144275

RESUMO

Chagas disease is a leading public health problem. More than 8 million people are affected by the disease, which is endemic in 21 countries in Latin America, generating an average annual cost of 7.2 billion dollars per year. The conventional treatment of Chagas disease is carried out by administering the drug benznidazole (BZN), which has caused numerous adverse reactions. Hence, the search for new, more efficient, and less toxic anti-chagasic agents is essential. Recently, chalcones have been researched to propose new therapies against neglected diseases, mainly Trypanosoma cruzi. The objective of this work was to evaluate for the first time the antiproliferative potential of chalcone derived from the natural product on T. cruzi strain Y. The molecular structure of the chalcone was confirmed by spectrometric data. The toxicity of chalcone in LLC-MK2 cells indicated that a concentration of 514.10 ± 62.40 µM was able to reduce cell viability by 50%. Regarding the effect of chalcone on epimastigote forms, an IC50 value of 46.57 ± 9.81 µM was observed; 45.92 ± 8.42 and 16.32 ± 3.41 µM at times of 24, 48 and 72 hours, respectively. The chalcone was able to eliminate trypomastigote forms at all concentrations tested, except for 31.25 µM, with LC50 values of 117.90 ± 12.60 µM, lower than the reference drug BZN (161.40 ± 31. 80 µM). The mechanism of action may be related to the membrane damage provoked by reduction of the mitochondrial potential. The anti-T. cruzi effect can be assigned through some structural aspects of the chalcone as the nitro group (NO2) is present, which can be enzymatically reduced forming a nitro radical, and the presence of methoxyl groups in the A ring of the chalcone. In silico studies showed that the chalcone had a higher affinity for cruzain when compared to BZN and the co-crystallized inhibitor KB2, as it presented a more thermodynamically stable complex in the order of -6.9 kcal mol-1. The pharmacokinetic prediction showed a significant probability of antiprotozoal activity, a good volume of distribution after being absorbed in the intestine, and a low chance of activity in the central nervous system. Therefore, these results suggest that the chalcone can become a potential cruzain enzyme inhibitor with trypanocidal activity.


Assuntos
Chalcona , Tripanossomicidas , Produtos Biológicos , Chalcona/farmacologia , Humanos , Simulação de Acoplamento Molecular , Tripanossomicidas/farmacologia , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...