Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 12(25): 3235-3241, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32930186

RESUMO

Polypyrrole (PPy) is a polymer widely used as an extraction phase due to its ability to perform intermolecular interactions with the analyte, such as acid-base, π-π, dipole-dipole, hydrophobic, and hydrogen bonding. In this manuscript, we report the coating of a stainless steel needle with a PPy film for analyte extraction and subsequent analysis by electrospray ionization mass spectrometry (ESI-MS) under ambient and open-air conditions. The method, named PPy-ESI-MS, was optimized for analysis of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) in synthetic urine. Seven cycles of electrodeposition of the PPy film onto the needle surface, sample at pH 8, and 40 min of extraction of analytes were determined as the best analysis conditions. The analytical performance of PPy-ESI-MS was evaluated for MDA and MDMA compounds. Analytical curves were obtained with R2 > 0.98. Limits of detection (LODs) and limits of quantification (LOQs) were determined as 20 µg L-1 and 70 µg L-1 for MDA and as 25 µg L-1 and 80 µg L-1 for MDMA, respectively. Values of precision were below 17%, and values of accuracy below 5%. The apparent recoveries ranged between 84.5% and 111.3%. In addition, the PPy-ESI-MS method was applied for the analysis of sarcosine in synthetic urine in order to evaluate the performance of the method for another class of compounds. The calibration curve was obtained with R2 > 0.98, along with LOD and LOQ of 30 µg L-1 and 100 µg L-1, respectively. The precision and accuracy values were below 5% and 8%, respectively, and the apparent recoveries close to 100%. This work demonstrates the usefulness of combining an extraction phase with ESI-MS analysis under ambient conditions to determine different classes of small molecules in a complex sample.

2.
Inflammopharmacology ; 28(4): 915-928, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529601

RESUMO

AIMS: This study investigated the antinociceptive and anti-inflammatory effects of new pyrazole compounds LQFM011(5), LQFM043(6) and LQFM044(7) as well as the mechanisms of action and acute in vitro toxicity. MAIN METHODS: The antinociceptive activity was evaluated using the acetic acid-induced abdominal writhing test, formalin-induced pain test and the Randall-Selitto test. The anti-inflammatory activity was evaluated using models of paw oedema and pleurisy induced by carrageenan; cell migration, the levels of tumour necrosis factor α (TNF-α) and myeloperoxidase (MPO) enzyme activity were evaluated. In addition, the ability to inhibit phospholipase A2 (PLA2) in vitro and docking in PLA2 were used. Acute oral systemic toxicity in mice was evaluated through the neutral red uptake assay. KEY FINDINGS: The synthesised compounds (5-7), delivered via gavage (p.o.) at 70, 140 or 280 µmol/kg, decreased the number of writhings induced by acetic acid; the three compounds (280 µmol/kg p.o.) reduced the paw licking time in the first and second phase of the formalin test and decreased the nociceptive threshold variation in the Randall-Selitto test. Furthermore, this dose reduced oedema formation, leucocyte migration (specifically through reduction in polymorphonuclear cell movement) and increased mononuclear cells. MPO activity and the levels of pro-inflammatory cytokines TNF-α were decreased. Evaluation of PLA2 inhibition via the docking simulation revealed more interactions of LQFM043R(6) and LQFM044(7), data that corroborated the half-maximal inhibitory concentration (IC50) of PLA2 inhibition in vitro. Therefore, LQFM011(5), LQFM043(6) and LQFM044(7) were classified with the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) as category 4.


Assuntos
Pirazóis/síntese química , Pirazóis/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Feminino , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Dor/tratamento farmacológico , Dor/metabolismo , Medição da Dor/métodos , Pleurisia/tratamento farmacológico , Pleurisia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Anal Bioanal Chem ; 412(22): 5389-5396, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556565

RESUMO

A method named imprint paper spray ionization mass spectrometry (imprint-PSI-MS) has been developed and employed for the determination of pungency of peppers. A pepper fruit was cut into a triangular shape, deposited onto a triangular paper, and compressed by a homemade press tool aiming to imprint and transfer the pepper constituents onto the paper surface. Subsequently, the triangular paper was submitted to conventional PSI-MS analysis. Twelve peppers were analyzed, ranging from highly pungent to lowly pungent taste. Pepper pungency values from the Scoville scale (in Scoville heat units, SHU) were compared with the ion intensities of the capsaicin and dihydrocapsaicin compounds obtained from the imprint-PSI-MS analysis, and a correlation coefficient of 0.97 was achieved. In addition, the ion intensities of a sugar compound were monitored in all peppers, and the results were compared with the Scoville scale. Low sugar ion intensities were detected in pungent peppers, while high ion intensities were achieved in low-pungent peppers, suggesting that the pepper pungency may be determined by inversely relating pungency to sugar contents. This work demonstrates the utility of the imprint-PSI-MS method to perform rapid qualitative analyses of peppers and estimate the pungency by monitoring the pepper metabolites. Graphical abstract.


Assuntos
Capsicum/química , Espectrometria de Massas/métodos , Papel , Paladar , Capsaicina/análogos & derivados , Capsicum/classificação , Humanos , Especificidade da Espécie
4.
J Am Soc Mass Spectrom ; 30(10): 2051-2059, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342263

RESUMO

In this study, a molecularly imprinted polymer-coated probe electrospray ionization mass spectrometry (MIPCPESI-MS) method was developed for detection of phorbol esters (PEs) and deoxyphorbol metabolites in Jatropha curcas leaves. Such an approach was established by sticking on a metallic needle a molecularly imprinted polymer to particularly design a MIP-coated probe for selective sampling and ionization of PEs and deoxyphorbol metabolites. By a subsequent application of a high voltage and methanol, as spray solvent, ESI was generated for direct and rapid analysis under ambient and open-air conditions. MIP-coated probe exhibited a high sampling capacity of the PEs and its metabolites in methanolic extracts of J. curcas leaves compared with the non-imprinted polymer (NIP)-coated probe. MIPCPESI-MS allowed the detection of phorbol 12,13-diacetate (PDA) from J. curcas leaves with minimal sample preparation, and with detection limit and quantification reaching 0.28 µg/mL and 0.92 µg/mL, respectively. Also, good linearity was obtained with R2 > 0.99 and precision and accuracy values between 4.06-13.49% and - 1.60 to - 15.26%, respectively. The current method was successfully applied to screening methanolic extracts of six different J. curcas leaf genotypes (three toxic and three non-toxic). PDA and three PE deoxyphorbol metabolites were identified only from toxic genotypes, in which PDA was determined with concentration ranging from 222.19 ± 23.55 to 528.23 ± 19.72 µg/g. All these findings support that the MIPCPESI-MS method developed here has a high potential for the analysis of PEs in plant extracts enabling differentiation of toxic and non-toxic genotypes earlier in the leaves.


Assuntos
Jatropha/química , Impressão Molecular/métodos , Ésteres de Forbol/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Limite de Detecção , Modelos Lineares , Compostos Fitoquímicos/química , Polímeros , Reprodutibilidade dos Testes
5.
Chem Sci ; 9(37): 7297-7303, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30294418

RESUMO

The largest graphene sample obtained through a chemical reaction under ambient conditions (temperature and pressure), using simple molecules such as benzene or n-hexane as precursors, is reported. Starting from a heterogeneous reaction between solid iron chloride and the molecular precursor (benzene and n-hexane) at a water/oil interface, graphene sheets with micrometric lateral size are obtained as a film deposited at the liquid/liquid (L/L) interface. The pathway involving the cyclization and aromatization of n-hexane to benzene at the L/L interface, and the sequence of conversion of benzene to biphenyl and biphenyl to condensed rings (which originates the graphene structures) was followed by different characterization techniques and a mechanistic proposal is presented. Finally, we demonstrate that this route can be extended for the synthesis of N-doped graphene, using pyridine as the molecular precursor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...