Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176510

RESUMO

The economic burden of chronic wounds, the complexity of the process of tissue repair and the possibility of resistant bacterial infections, have triggered a significant research interest in the application of natural alternative therapies for wound healing. Biomolecules are intrinsically multi-active, as they affect multiple mechanisms involved in tissue repair phenomenon, including immunomodulatory, anti-inflammatory, cell proliferation, extra cellular matrix remodeling and angiogenesis. Chitosan features a unique combination of attributes, including intrinsic hemostatic, antimicrobial, and immunomodulatory properties, that make it an exceptional candidate for wound management, in the development of wound dressings and scaffolds. In this study, we produced nanoemulsions (NE) loaded with SFO, characterized them, and evaluated their tissue repairing properties. Dynamic light scattering (DLS) analysis confirmed the formation of a nanoemulsion with a droplet size of 21.12 ± 2.31 nm and a polydispersity index (PdI) of 0.159, indicating good stability for up to 90 days. To investigate the potential wound healing effects, SFO-loaded NE were applied on male C57BL/6 mice for seven consecutive days, producing a significantly higher wound closure efficiency (p < 0.05) for the group treated with SFO-loaded NE compared to the control group treated with the saline solution. This finding indicates that the SFO-loaded NE exhibits therapeutic properties that effectively promote wound healing in this experimental model. Then, SFO-loaded NE were incorporated into chitosan:polyvinyl alcohol (PVA)-based films. The inclusion of NE into the polymer matrix resulted in increased lipophilicity reflected by the contact angle results, while decreasing moisture absorption, water solubility, and crystallinity. Moreover, FTIR analysis confirmed the formation of new bonds between SFO-NE and the film matrix, which also impacted on porosity properties. Thermal analysis indicated a decrease in the glass transition temperature of the films due to the presence of SFO-NE, suggesting a plasticizing role of NE, confirmed by XRD results, that showed a decrease in the crystallinity of the blend films upon the addition of SFO-NE. AFM images showed no evidence of NE droplet aggregation in the Chitosan:PVA film matrix. Moisture absorption and water content decreased upon incorporation of SFO-loaded NE. Although the inclusion of NE increased hydrophobicity and water contact angle, the values remained within an acceptable range for wound healing applications. Overall, our results emphasize the significant tissue repairing properties of SFO-loaded NE and the potential of Chitosan:PVA films containing nanoencapsulated SFO as effective formulations for wound healing with notable tissue repairing properties.


Assuntos
Quitosana , Óleos Voláteis , Humanos , Camundongos , Animais , Masculino , Quitosana/química , Óleos Voláteis/farmacologia , Camundongos Endogâmicos C57BL , Cicatrização , Água/farmacologia , Álcool de Polivinil/química , Antibacterianos/farmacologia
2.
Mater Today Bio ; 18: 100525, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36619201

RESUMO

Several human pathogens can cause long-lasting neurological damage. Despite the increasing clinical knowledge about these conditions, most still lack efficient therapeutic interventions. Gene therapy (GT) approaches comprise strategies to modify or adjust the expression or function of a gene, thus providing therapy for human diseases. Since recombinant nucleic acids used in GT have physicochemical limitations and can fail to reach the desired tissue, viral and non-viral vectors are applied to mediate gene delivery. Although viral vectors are associated to high levels of transfection, non-viral vectors are safer and have been further explored. Different types of nanosystems consisting of lipids, polymeric and inorganic materials are applied as non-viral vectors. In this review, we discuss potential targets for GT intervention in order to prevent neurological damage associated to infectious diseases as well as the role of nanosized non-viral vectors as agents to help the selective delivery of these gene-modifying molecules. Application of non-viral vectors for delivery of GT effectors comprise a promising alternative to treat brain inflammation induced by viral infections.

3.
J Tissue Eng Regen Med ; 14(12): 1792-1803, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010118

RESUMO

This study aimed to verify the efficacy of low-level laser irradiation (LLLI) on the proliferation of MC3T3-E1 preosteoblasts cultured on poly(lactic acid) (PLA) films. The produced films were characterized by contact angle tests, scanning electron microscopy (SEM), atomic force microscopy, differential scanning calorimetry, and X-ray diffraction. The MC3T3-E1 cells were cultured as three different groups: Control-cultured on polystyrene plastic surfaces; PLA-cultured on PLA films; and PLA + Laser-cultured on PLA films and submitted to laser irradiation (660 nm; 30 mW; 4 J/cm2 ). Cell proliferation was analyzed by Trypan blue and Alamar blue assays at 24, 48, and 72 h after irradiation. Cell viability was assessed by Live/Dead assay, apoptosis-related events were evaluated by Annexin V/propidium iodide (PI) expression, and cell cycle events were analyzed by flow cytometry. Cell morphology on the surface of films was assessed by SEM. Cell counting and biochemical assay results indicate that the PLA + Laser group exhibited higher proliferation (p < 0.01) when compared with the Control and PLA groups. The Live/Dead and Annexin/PI assays indicate increased cell viability in the PLA + Laser group that also presented a higher percentage of cells in the proliferative cell cycle phases (S and G2/M). These findings were also confirmed by the higher cell density observed in the irradiated group through SEM images. The evidence from this study supports the idea that LLLI increases the proliferation of MC3T3-E1 cells on PLA surfaces, suggesting that it can be potentially applied in bone tissue engineering.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteoblastos/citologia , Osteoblastos/efeitos da radiação , Poliésteres/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos dos fármacos , Forma Celular/efeitos da radiação , Células Cultivadas , Cristalização , Camundongos , Microscopia de Força Atômica , Osteoblastos/efeitos dos fármacos , Difração de Raios X
4.
Mater Sci Eng C Mater Biol Appl ; 97: 602-612, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678947

RESUMO

Biocompatible scaffolds have been used to promote cellular growth and proliferation in order to develop grafts, prostheses, artificial skins and cartilage. Electrospinning is widely studied as a method capable of producing nanofibers which enables cell attachment and proliferation, generating a functional scaffold that is suitable for many types of organs or tissues. In this study, electrospinning was used to obtain core-shell and monolithic fibers from the biocompatible poly (lactic acid) and poly (vinyl alcohol) polymers. The main purpose of this work is to produce core-shell nanofiber based scaffolds that works as a sustained delivery vehicle for BMP-2 protein, allowing those fibers to be used in the recovery of alveolar bone tissue without further bone surgery. Then, polymer nanofibers were manufactured by optimizing process parameters of coaxial electrospinning with emphasis on the most relevant ones: voltage, internal and external flows in an attempt to correlate fibers properties with protein releasing abilities. All nanofibers were characterized according to its morphology, thermal behaviour, crystallinity and release profile. For the release tests, bovine albumin was added into internal fiber for future periodontal restorage application. Obtained results demonstrate that fibers were formed with diameters up to 250 nm. According to electronic microscopy images, one could observe surface of nanofibers, thickness and core-shell morphology confirmed. X-ray diffraction analysis and contact angle tests showed fibers with low crystal degree and low hydrophobicity. Nanofibers structure affected in vitro release model tests and consequently the cellular assays.


Assuntos
Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Nanofibras/química , Poliésteres/química , Álcool de Polivinil/química , Regeneração , Fator de Crescimento Transformador beta/química , Animais , Materiais Biocompatíveis/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Osso e Ossos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Camundongos , Nanofibras/toxicidade , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Engenharia Tecidual , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...