Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616613

RESUMO

Personal health records (PHR) represent health data managed by a specific individual. Traditional solutions rely on centralized architectures to store and distribute PHR, which are more vulnerable to security breaches. To address such problems, distributed network technologies, including blockchain and distributed hash tables (DHT) are used for processing, storing, and sharing health records. Furthermore, fully homomorphic encryption (FHE) is a set of techniques that allows the calculation of encrypted data, which can help to protect personal privacy in data sharing. In this context, we propose an architectural model that applies a DHT technique called the interplanetary protocol file system and blockchain networks to store and distribute data and metadata separately; two new elements, called data steward and shared data vault, are introduced in this regard. These new modules are responsible for segregating responsibilities from health institutions and promoting end-to-end encryption; therefore, a person can manage data encryption and requests for data sharing in addition to restricting access to data for a predefined period. In addition to supporting calculations on encrypted data, our contribution can be summarized as follows: (i) mitigation of risk to personal privacy by reducing the use of unencrypted data, and (ii) improvement of semantic interoperability among health institutions by using distributed networks for standardized PHR. We evaluated performance and storage occupation using a database with 1.3 million COVID-19 registries, which showed that combining FHE with distributed networks could redefine e-health paradigms.


Assuntos
Blockchain , COVID-19 , Registros de Saúde Pessoal , Humanos , Registros Eletrônicos de Saúde , Confidencialidade , Segurança Computacional
2.
J Biomed Inform ; 92: 103140, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30844481

RESUMO

BACKGROUND: The Personal Health Record (PHR) and Electronic Health Record (EHR) play a key role in more efficient access to health records by health professionals and patients. It is hard, however, to obtain a unified view of health data that is distributed across different health providers. In particular, health records are commonly scattered in multiple places and are not integrated. OBJECTIVE: This article presents the implementation and evaluation of a PHR model that integrates distributed health records using blockchain technology and the openEHR interoperability standard. We thus follow OmniPHR architecture model, which describes an infrastructure that supports the implementation of a distributed and interoperable PHR. METHODS: Our method involves implementing a prototype and then evaluating the integration and performance of medical records from different production databases. In addition to evaluating the unified view of records, our evaluation criteria also focused on non-functional performance requirements, such as response time, CPU usage, memory occupation, disk, and network usage. RESULTS: We evaluated our model implementation using the data set of more than 40 thousand adult patients anonymized from two hospital databases. We tested the distribution and reintegration of the data to compose a single view of health records. Moreover, we profiled the model by evaluating a scenario with 10 superpeers and thousands of competing sessions transacting operations on health records simultaneously, resulting in an average response time below 500 ms. The blockchain implemented in our prototype achieved 98% availability. CONCLUSION: Our performance results indicated that data distributed via a blockchain could be recovered with low average response time and high availability in the scenarios we tested. Our study also demonstrated how OmniPHR model implementation can integrate distributed data into a unified view of health records.


Assuntos
Blockchain , Registros Eletrônicos de Saúde/normas , Registros de Saúde Pessoal , Software , Algoritmos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...