Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 33(1): 175-83, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23122202

RESUMO

The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$0.12 kg(-1) for the waste treated with microwaves, US$1.10 kg(-1) for the waste treated by the autoclave and US$1.53 kg(-1) for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.


Assuntos
Eliminação de Resíduos de Serviços de Saúde/economia , Compostos de Cálcio/economia , Custos e Análise de Custo , Desinfecção/economia , Micro-Ondas , Óxidos/economia
2.
J Environ Manage ; 91(9): 1831-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20452717

RESUMO

Soybean production and its supply chain are highly dependent on inputs such as land, fertilizer, fuel, machines, pesticides and electricity. The expansion of this crop in Brazil in recent decades has generated concerns about its environmental impacts. To assess these impacts, two representative chains supplying soybeans to Europe were identified: Center West (CW) and Southern (SO) Brazil. Each supply chain was analyzed using Life Cycle Assessment methodology. We considered different levels of use of chemical and organic fertilizers, pesticides and machinery, different distances for transportation of inputs and different yield levels. Because transportation contributed strongly to environmental impacts, a detailed study was performed to identify the routes used to transport soybeans to seaports. Additionally, we considered different levels of land occupation and land transformation to represent the impact of deforestation in the CW region. Environmental impacts were calculated for 1000 kg of soybean up to and including the delivery to Europe at the seaport in Rotterdam, at 13% humidity. Overall results showed that the impacts are greater for CW than for SO for all impact categories studied, including acidification (7.7 and 5.3 kg SO(2) eq., respectively), climate change (959 and 510 kg CO(2) eq.), cumulative energy demand (12,634 and 6,999 MJ) and terrestrial ecotoxicity (4.9 and 3.1 kg 1,4-DCB eq.), except eutrophication and land occupation. The same trend was observed for the crop-production stage. Efforts to reduce chemical fertilizers and diesel consumption can reduce CO(2) emissions. Although deforestation for crop production has decreased in recent years, the contribution of deforestation to climate change and cumulative energy demand remains significant. In the CW scenario deforestation contributed 29% to climate change and 20% to cumulative energy demand. Results also showed that although there are different transportation options in Brazil, the current predominance of road transport causes severe environmental impacts. In CW, road transport contributed 19% to climate change and 24% to cumulative energy demand, while in SO it contributed 12% and 15% to these impacts, respectively. Improvements in the logistics of transportation, giving priority to rail and river transports over road transport, can contribute significantly to reducing greenhouse gas emissions and decreasing energy use. Future studies involving Brazilian soybeans should take into account the region of origin as different levels of environmental impact are predicted.


Assuntos
Agricultura , Meio Ambiente , Poluição Ambiental , Glycine max , Meios de Transporte , Brasil , Mudança Climática , Eutrofização , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...