Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 288: 110232, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521224

RESUMO

Seed coat is the tissue which establishes an interface between the seed inner tissues and external environment. Our group has shown that cowpea seed coat undergoes coordinated events of programmed cell death (PCD) during development. In relation to germinating seed coats, little is known on PCD events. The goal here was to investigate the biochemical aspects of germinating soybean seed coat, focusing on proteolytic activities related to PCD. In gel and in solution activity profiles of quiescent and germinating seed coat extracts revealed a complex pattern of caspase- and metacaspase-like cysteine protease activities. Trypsin inhibitor and reserve proteins were revealed as potential substrates for these proteases. A pancaspase inhibitor (z-VAD-CHO) affected the radicle length of seeds germinated under its presence. Ultrastructural analysis showed the absence of cell organelles in all seed coat layers after imbibition, while oligonucleosome fragments peaked at 72 h after imbibition (HAI). Altogether, the data suggest the presence of biochemical PCD hallmarks in germinating soybean seed coat and point to the involvement of the detected protease activities in processes such as reserve protein mobilization and weakening of seed coat.


Assuntos
Apoptose , Glycine max/fisiologia , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Glycine max/enzimologia
2.
Biosci Rep ; 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29444820

RESUMO

Ric c1, an allergenic protein from Ricinus communis , is an insect α-amylase inhibitor that has become an occupational allergen. Ric c1 can cross-react with allergens from wheat, soybean, peanut, shrimp, fish, gluten, house dust, tobacco, and air fungus, thereby amplifying the concern and risks caused by Ricinus allergens. Two continuous IgE-binding epitopes were identified in Ric c1, both containing glutamic acid residues involved in IgE-binding and allergic challenges. We produced recombinant Ric c1 (rRic c1) in Escherichia coli , using primers from foliar R. communis DNA, and a mutant (Glu-Leu) recombinant protein (mrRic c1) in the same system using synthetic genes. rRic c1 preserved both allergenic and α-amylase inhibitory properties, and mrRic c1 drastically reduced allergenic properties. These results can help to establish meaningful relationships between structure, defense and allergenicity, important steps for producing engineered plants and developing new approaches for immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...