Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500680

RESUMO

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Assuntos
Neoplasias do Colo , Lipossomos , Nanopartículas , Microambiente Tumoral , Animais , Camundongos , Ligantes , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fator de Necrose Tumoral alfa , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
2.
Atherosclerosis ; 304: 30-38, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32574829

RESUMO

BACKGROUND AND AIMS: Peripheral arterial disease (PAD) is an important cause of morbidity and mortality with little effective medical treatment currently available. Nitric oxide (NO) is crucially involved in organ perfusion, tissue protection and angiogenesis. METHODS: We hypothesized that a novel NO-donor, MPC-1011, might elicit vasodilation, angiogenesis and arteriogenesis and in turn improve limb perfusion, in a hindlimb ischemia model. Hindlimb ischemia was induced by femoral artery ligation in Sprague-Dawley rats, which were randomized to receive either placebo, MPC-1011, cilostazol or both, up to 28 days. Limb blood flow was assessed by laser Doppler imaging. RESULTS: After femoral artery occlusion, limb perfusion in rats receiving MPC-1011 alone or in combination with cilostazol was increased throughout the treatment regimen. Capillary density and the number of arterioles was increased only with MPC-1011. MPC-1011 improved vascular remodeling by increasing luminal diameter in the ischemic limb. Moreover, MPC-1011 stimulated the release of proangiogenic cytokines, including VEGF, SDF1α and increased tissue cGMP levels, reduced platelet activation and aggregation, potentiated proliferation and migration of endothelial cells which was blunted in the presence of soluble guanylyl cyclase inhibitor LY83583. In MPC-1011-treated rats, Lin-/CD31+/CXCR4+ cells were increased by 92.0% and Lin-/VEGFR2+/CXCR4+ cells by 76.8% as compared to placebo. CONCLUSIONS: Here we show that the NO donor, MPC-1011, is a specific promoter of angiogenesis and arteriogenesis in a hindlimb ischemia model in an NO-cGMP-VEGF- dependent manner. This sets the basis to evaluate and confirm the efficacy of such therapy in a clinical setting in patients with PAD and impaired limb perfusion.


Assuntos
Quimiocina CXCL12 , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Fator A de Crescimento do Endotélio Vascular , Animais , Modelos Animais de Doenças , Células Endoteliais , Membro Posterior , Músculo Esquelético , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
Biomed Pharmacother ; 109: 610-620, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30399598

RESUMO

The occurrence of inflammation and protein malnutrition is an aggravating risk factor for morbidity and mortality in the clinical setting. The green propolis, a natural product made by Apis mellifera bees from Baccharis dracunculifolia resin, has therapeutic potential to modulate chronic inflammation. However, its effect on inflammation in an impaired nutritional status is not known. The aim of this study was to characterize the effects of the administration of the hydroalcoholic extract of the green propolis in the chronic inflammatory process of mice submitted to a low-protein diet. For this, we used the subcutaneous implantation of sponge disks as an inflammatory model and the animals were distributed in the following groups: standard protein diet (12% protein content), control treatment; standard protein diet, propolis treatment; low-protein diet (3% protein content), control treatment; low-protein diet, propolis treatment. Propolis was given daily at a dose of 500 mg/kg (p.o.) during a period of 7 or 15 days. Our main findings show that animals fed with standard protein diet and treated with propolis had low levels of red blood cells, hemoglobin, and hematocrit, with the subsequent reestablishment of these levels, in addition to monocyte count elevation and higher TNF levels after one week of treatment. In the low-protein diet group, the propolis treatment provided a significant recovery in weight and maintenance of total serum protein levels at the end of two weeks of treatment. Histological analysis showed propolis reduced the inflammatory infiltrate in the sponges of both standard and low-protein diet groups. In addition, the propolis extract presented antiangiogenic effect in both groups. Therefore, our data suggests that the hydroalcoholic extract of the green propolis promotes weight recovery and avoid the reduction of protein levels, in addition to inhibit inflammation and angiogenesis in animals fed with a low-protein diet.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Mediadores da Inflamação/metabolismo , Própole/administração & dosagem , Deficiência de Proteína/tratamento farmacológico , Deficiência de Proteína/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Etanol/administração & dosagem , Feminino , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Deficiência de Proteína/induzido quimicamente , Distribuição Aleatória , Água/administração & dosagem
4.
Bio Protoc ; 9(13): e3285, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33654800

RESUMO

Skin wound healing is a complex process involving different events such as blood coagulation, inflammation, new blood vessels formation, and extracellular matrix deposition. These events can be observed by using histology techniques. However, the lack of the standardization of such parameters impacts on the reproducibility of results. Here, we describe a protocol to perform macroscopic and microscopic analyses of the events that occur during skin wound healing using the experimental model of excisional wounds in rats.

5.
Curr Neurovasc Res ; 14(2): 125-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28294064

RESUMO

BACKGROUND: Stroke is the second leading cause of death and a major cause of disability of adults worldwide. Inflammatory processes are known to contribute to the pathophysiology of cerebral ischemia, especially following reperfusion. Chemokines and their receptors are involved in migration of leukocytes and have been implicated in the pathogenesis of ischemic stroke. OBJECTIVE: In the present study, we investigated the effects of C-C chemokine receptor type 5 (CCR5) deficiency on neurological outcome, brain damage and expression of pro-inflammatory chemokines: chemokine (C-X-C motif) ligand 1 (CXCL1), chemokine (CC motif) ligand 3 (CCL3) and chemokine (C-C motif) ligand 5 (CCL5), and the brain-derived neurotrophic factor (BDNF). METHODS: Adult male C57BL/6 (wild-type) (WT) and CCR5 deficient mice were subjected to transient cerebral ischemia induced by 25 min of bilateral common carotid artery occlusion (BCCAO) followed by 24 hours of reperfusion. Mice were divided into four groups: WT sham group, which underwent sham operation; WT ischemic group, which was subjected to transient bilateral common carotid artery occlusion, CCR5-/- sham group, which underwent sham operation, and CCR5-/- ischemic group, which was subjected to transient BCCAO. RESULTS: In CCR5 deficiency, we observed a significant improvement in the neurological deficits associated with decreased brain infarcted area as evaluated by triphenyltetrazolium chloride (TTC). Moreover, CCR5 deficiency revealed decreased percentage of necrotic cavities areas and frequency of ischemic neurons by histometric analysis. In addition, CCR5-/- ischemic animals showed lower brain levels of the chemokine CXCL1 and higher levels of BDNF by ELISA, compared with WT BCCAo mice. CONCLUSION: Taken together, our results suggest a potential neuroprotection in the absence of CCR5 receptor during global brain ischemia and reperfusion injury.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Regulação da Expressão Gênica/genética , Receptores CCR5/deficiência , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/terapia , Animais , Encéfalo/patologia , Isquemia Encefálica/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Crescimento Neural/metabolismo , Exame Neurológico , Receptores CCR5/genética , Traumatismo por Reperfusão/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-27477504

RESUMO

The role of suppressors of cytokine signaling (SOCS) in meningoencephalitis caused by Bovine herpesvirus 5 (BoHV-5) was evaluated by intracranial infection in C57BL/6 wild-type mice (WT) and SOCS2 deficient mice (SOCS2(-/-)). Both infected groups presented weight loss, ruffled fur and hunched posture. Additionally, infected SOCS2(-/-) mice showed swollen chamfer and progressive depression. Infected WT animals developed mild meningitis, characterized by infiltration of mononuclear cells. Moreover, viral DNA was detected in liver and lung from infected WT group. This group also showed elevated brain levels of IFN-γ, IL-10, CXCL1 and CCL5, when compared with non-infected WT animals. Brain inflammation was exacerbated in infected SOCS2(-/-) mice with widespread distribution of the virus and increased brain levels of TNF-α, IFN-γ, IL-10, IL-12, CXCL1 and CCL5, when compared with WT infected mice. Moreover, infected SOCS2 deficient mice exhibited reduced brain mRNA expression of IFNα and IFNß and increased expression of mRNA of SOCS1, compared with infected WT mice. Taken together, our study provides an insight into the role of SOCS2 in modulating the immune response to BoHV-5 infection.


Assuntos
Encéfalo/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 5/genética , Herpesvirus Bovino 5/patogenicidade , Meningoencefalite/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Animais , Encéfalo/imunologia , Encéfalo/fisiopatologia , Bovinos , Quimiocina CCL5/genética , Quimiocina CXCL1/genética , Citocinas/genética , DNA Viral , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/fisiopatologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 5/imunologia , Interferon-alfa/genética , Interferon beta/genética , Fígado/virologia , Pulmão/virologia , Meningoencefalite/imunologia , Meningoencefalite/fisiopatologia , Meningoencefalite/virologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Proteínas Supressoras da Sinalização de Citocina/deficiência , Proteínas Supressoras da Sinalização de Citocina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...