Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 12(1): 2296, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863880

RESUMO

Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Epidemias/prevenção & controle , Monitoramento Epidemiológico , Brasil/epidemiologia , Dengue/prevenção & controle , Dengue/transmissão , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Estudos de Viabilidade , Variação Genética , Genoma Viral/genética , Humanos , Unidades Móveis de Saúde , Epidemiologia Molecular , Tipagem Molecular , Filogenia , Estudo de Prova de Conceito , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Sequenciamento Completo do Genoma
3.
PLoS Negl Trop Dis ; 15(4): e0009290, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861753

RESUMO

Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT). Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas. Epidemiological data revealed a reduction in the number of reported cases over 2018-2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country. Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya/genética , Genoma Viral/genética , Adolescente , Adulto , Teorema de Bayes , Brasil/epidemiologia , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Monitoramento Epidemiológico , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Análise Espaço-Temporal , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Clin Infect Dis ; 73(7): e2436-e2443, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32766829

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) emerged in the Americas in 2013 and has caused approximately 2.1 million cases and >600 deaths. A retrospective investigation was undertaken to describe clinical, epidemiological, and viral genomic features associated with deaths caused by CHIKV in Ceará state, northeast Brazil. METHODS: Sera, cerebrospinal fluid (CSF), and tissue samples from 100 fatal cases with suspected arbovirus infection were tested for CHIKV, dengue virus (DENV), and Zika virus (ZIKV). Clinical, epidemiological, and death reports were obtained for patients with confirmed CHIKV infection. Logistic regression analysis was undertaken to identify independent factors associated with risk of death during CHIKV infection. Phylogenetic analysis was conducted using whole genomes from a subset of cases. RESULTS: Sixty-eight fatal cases had CHIKV infection confirmed by reverse-transcription quantitative polymerase chain reaction (52.9%), viral antigen (41.1%), and/or specific immunoglobulin M (63.2%). Co-detection of CHIKV with DENV was found in 22% of fatal cases, ZIKV in 2.9%, and DENV and ZIKV in 1.5%. A total of 39 CHIKV deaths presented with neurological signs and symptoms, and CHIKV-RNA was found in the CSF of 92.3% of these patients. Fatal outcomes were associated with irreversible multiple organ dysfunction syndrome. Patients with diabetes appear to die at a higher frequency during the subacute phase. Genetic analysis showed circulation of 2 CHIKV East-Central-South African (ECSA) lineages in Ceará and revealed no unique virus genomic mutation associated with fatal outcome. CONCLUSIONS: The investigation of the largest cross-sectional cohort of CHIKV deaths to date reveals that CHIKV-ECSA strains can cause death in individuals from both risk and nonrisk groups, including young adults.


Assuntos
Febre de Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Brasil/epidemiologia , Febre de Chikungunya/epidemiologia , Estudos Transversais , Humanos , Filogenia , Estudos Retrospectivos , Adulto Jovem , Zika virus/genética , Infecção por Zika virus/epidemiologia
5.
PLoS Negl Trop Dis ; 14(8): e0008405, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32780745

RESUMO

Yellow fever virus (YFV) causes a clinical syndrome of acute hemorrhagic hepatitis. YFV transmission involves non-human primates (NHP), mosquitoes and humans. By late 2016, Brazil experienced the largest YFV outbreak of the last 100 years, with 2050 human confirmed cases, with 681 cases ending in death and 764 confirmed epizootic cases in NHP. Among affected areas, Bahia state in Northeastern was the only region with no autochthonous human cases. By using next generation sequence approach, we investigated the molecular epidemiology of YFV in NHP in Bahia and discuss what factors might have prevented human cases. We investigated 47 YFV positive tissue samples from NHP cases to generate 8 novel YFV genomes. ML phylogenetic tree reconstructions and automated subtyping tools placed the newly generated genomes within the South American genotype I (SA I). Our analysis revealed that the YFV genomes from Bahia formed two distinct well-supported phylogenetic clusters that emerged most likely of an introduction from Minas Gerais and Espírito Santo states. Vegetation coverage analysis performed shows predominantly low to medium vegetation coverage in Bahia state. Together, our findings support the hypothesis of two independent YFV SA-I introductions. We also highlighted the effectiveness of the actions taken by epidemiological surveillance team of the state to prevented human cases.


Assuntos
Doenças dos Primatas/virologia , Febre Amarela/veterinária , Vírus da Febre Amarela/genética , Alouatta , Animais , Brasil/epidemiologia , Callithrix , Ecossistema , Genoma Viral , Humanos , Filogenia , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação
6.
Emerg Microbes Infect ; 9(1): 1824-1834, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32726185

RESUMO

The recent emergence of a coronavirus (SARS-CoV-2), first identified in the Chinese city of Wuhan in December 2019, has had major public health and economic consequences. Although 61,888 confirmed cases were reported in Brazil by 28 April 2020, little is known about the SARS-CoV-2 epidemic in this country. To better understand the recent epidemic in the second most populous state in southeast Brazil - Minas Gerais (MG) - we sequenced 40 complete SARS-CoV-2 genomes from MG cases and examined epidemiological data from three Brazilian states. Both the genome analyses and the geographical distribution of reported cases indicate for multiple independent introductions into MG. Epidemiological estimates of the reproductive number (R) using different data sources and theoretical assumptions suggest the potential for sustained virus transmission despite a reduction in R from the first reported case to the end of April 2020. The estimated date of SARS-CoV-2 introduction into Brazil was consistent with epidemiological data from the first case of a returned traveller from Lombardy, Italy. These findings highlight the nature of the COVID-19 epidemic in MG and reinforce the need for real-time and continued genomic surveillance strategies to better understand and prepare for the epidemic spread of emerging viral pathogens..


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Genoma Viral , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Adulto , Idoso , Brasil/epidemiologia , COVID-19 , Feminino , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Sequenciamento Completo do Genoma , Adulto Jovem
7.
Front Public Health ; 8: 575536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520909

RESUMO

Antimicrobial resistance (AMR) is a major public health threat of global proportions, which has the potential to lead to approximately ten million deaths per year by 2050. Pressured by this wicked problem, in 2014, the World Health Organization launched a call for member states to share AMR data through the implementation of the Global Antimicrobial Resistance Surveillance System (GLASS), to appropriately scale and monitor the general situation world-widely. In 2017, Brazil joined GLASS and, in 2018, started its own national antimicrobial surveillance program (BR-GLASS) to understand the impact of resistance in the country. We compiled data obtained from the complete routine of three hospitals' microbiology labs during the year of 2018. This pilot data sums up to 200,874 antimicrobial susceptibility test results from 11,347 isolates. It represents 119 different microorganisms recovered from 44 distinct types of clinical samples. Specimens came from patients originating from 301 Brazilian cities, with 4,950 of these isolates from presumed Healthcare-Associated Infections (HAIs) and the other 6,397 community-acquired cases. The female population offered 58% of the collected samples, while the other 42% were of male origin. The urinary tract was the most common topography (6,372/11,347 isolates), followed by blood samples (2,072/11,347). Gram-negative predominated the bacterial isolates: Escherichia coli was the most prevalent in general, representing 4,030 isolates (89.0% of these from the urinary tract). Coagulase-negative Staphylococci were the most prevalent bacteria in blood samples. Besides these two species, the ESKAPE group have consolidated their prevalence. Regarding drug susceptibility results, 141,648 (70.5%) were susceptible, 9,950 (4.9%) intermediate, and 49,276 (24.5%) resistant. Acinetobacter baumannii was the most worrisome microorganism, with 65.3% of the overall antimicrobial susceptibility tests showing resistance, followed by ESBL-producing Klebsiella pneumoniae, with a global resistance rate of 59%. Although this is a pilot project (still limited to one state), this database shows the importance of a nation-wide surveillance program,[153mm][-12mm] Q14 especially considering it already had patients coming from 301 distinct counties and 18 different states. The BR-GLASS Program is an ongoing project that intends to encompass at least 95 hospitals distributed in all five geographical regions in Brazil within the next 5 years.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Projetos Piloto
8.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597773

RESUMO

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.


Assuntos
Surtos de Doenças , Genoma Viral , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/genética , Aedes/virologia , Alouatta/virologia , Animais , Brasil/epidemiologia , Callithrix/virologia , Cebus/virologia , Feminino , Variação Genética , Humanos , Incidência , Leontopithecus/virologia , Masculino , Mosquitos Vetores/virologia , Filogenia , Filogeografia , Sequenciamento Completo do Genoma , Febre Amarela/virologia , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Vírus da Febre Amarela/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...