Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38930786

RESUMO

The present study provides a comprehensive analysis of the chemical composition of essential oils from species of the Myrcia genus and their applications. The compiled results highlight the chemical diversity and biological activities of these oils, emphasizing their potential importance for various therapeutic and industrial applications. The findings reveal that Myrcia essential oils present a variety of bioactive compounds, such as monoterpenes and sesquiterpenes, which demonstrate antimicrobial activities against a range of microorganisms, including Gram-positive and Gram-negative bacteria, as well as yeasts. Furthermore, this study highlights the phytotoxic activity of these oils, indicating their potential for weed control. The results also point to the insecticidal potential of Myrcia essential oils against a range of pests, showing their viability as an alternative to synthetic pesticides. Additionally, species of the genus Myrcia have demonstrated promising hypoglycemic effects, suggesting their potential in diabetes treatment. This comprehensive synthesis represents a significant advancement in understanding Myrcia essential oils, highlighting their chemical diversity and wide range of biological activities. However, the need for further research is emphasized to fully explore the therapeutic and industrial potential of these oils, including the identification of new compounds, understanding of their mechanisms of action, and evaluation of safety and efficacy in different contexts.


Assuntos
Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Inseticidas/química , Inseticidas/farmacologia , Myrtaceae/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Animais , Óleos de Plantas/farmacologia , Óleos de Plantas/química
2.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474459

RESUMO

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Assuntos
Artrópodes , Óleos Voláteis , Piper nigrum , Piper , Sesquiterpenos , Animais , Óleos Voláteis/química , Acetilcolinesterase , Cromatografia Gasosa-Espectrometria de Massas , Piper/química , Óleos de Plantas/química
3.
Int J Food Sci ; 2023: 1446972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075189

RESUMO

Pentaclethra macroloba (Willd.), whose common name is "pracaxi," is naturally found in the Amazon region. The present study is aimed at analyzing the anatomy, seed histochemistry, and chemical composition in fatty acid profile of P. macroloba seed oils. Seeds were collected in the cities of Belém, Marituba, and São Domingos do Capim-PA. For the study in light microscopy, scanning electron microscopy, and histochemistry, seeds were sectioned in cross and longitudinal sections of the embryonic axis and fixed in formaldehyde, acetic acid, and 50% ethyl alcohol; neutral-buffered formalin; and formaldehyde and ferrous sulfate and stored in 70% ethyl alcohol. For the anatomical study, the seeds were subjected to the usual techniques of plant anatomy. Histochemical tests were performed on plant material, freehand sectioned, and embedded in histological paraffin with DMSO. The fatty acid profile was determined for gas chromatography (GC-FID). Integument is divided into three strata, monoseriate exotesta, mesotesta formed by several layers of parenchyma cells, and monoseriate endotesta, formed by compressed cells. Cotyledons are composed of thin-walled parenchyma cells with several secretory cavities and secretory idioblasts. The main metabolic classes are lipids, phenolic compounds, carbohydrates, proteins, and alkaloids. The main fatty acids found in P. macroloba oil are oleic, behenic, lignoceric, and linoleic. P. macroloba seeds have important anatomical characteristics for their circumscription in Leguminosae and also in Caesalpinioideae, and their oil is rich in fatty acids essential to the human diet, providing many benefits to the human health, such as fatty acids belonging to the omega family (linoleic, oleic).

4.
Molecules ; 28(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985605

RESUMO

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Assuntos
Annonaceae , Guatteria , Óleos Voláteis , Xylopia , Annonaceae/química , Xylopia/química , Guatteria/química , Óleos Voláteis/química , Brasil , Simulação de Acoplamento Molecular , Folhas de Planta/química
6.
Molecules ; 27(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080231

RESUMO

The Myrtaceae family is one of the most representative in the Amazon. Several species have high added-value pharmacological potential. In order to contribute to the knowledge of the aromatic profile of Myrtaceae species from the Amazon, the present study presents the first report on the productivity, chemical composition, and antioxidant profile of the essential oil (EO) of Myrcia paivae. Dry leaves of the species were submitted to hydrodistillation to obtain their EO. The EO performance was calculated on a moisture-free basis and the analysis of the chemical profile was carried out by GC/MS. The determination of the antioxidant capacity was assessed by means of the antioxidant capacity equivalent to the inhibition Trolox of the ABTS•+ and DPPH• radicals. The results indicate that EO performance was equivalent to 1.69%. As for the chemical composition, hydrocarbon monoterpenes were predominant in the sample (>77%); terpinolene (14.70%), α-phellandrene (14.69%), γ-terpinene (9.64%), sylvestrene (7.62%), α-thujene (6.46%), and α-pinene (6.39%) were the constituents with higher content. Regarding the antioxidant capacity, the results show that the EO presented good results in the inhibition of ABTS•+ (0.886 ± 0.226 mM L−1) and DPPH• (2.90 ± 0.083 mM L−1), which can be attributed to the high monoterpene content in the sample.


Assuntos
Myrtaceae , Óleos Voláteis , Antioxidantes/química , Monoterpenos/análise , Myrtaceae/química , Óleos Voláteis/química , Extratos Vegetais/química , Folhas de Planta/química
7.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335366

RESUMO

Chemical composition of the essential oils and extracts and the antimicrobial activity of Miconia minutiflora were investigated. The flavanone glycosides, pinocembroside and pinocembrin-7-O-[4″,6″-HHDP]-ß-D-glucose, were identified, along with other compounds that belong mainly to the triterpene class, besides the phenolics, gallic acid and methyl gallate. Sesquiterpenes and monoterpenes were the major compounds identified from the essential oils. Screening for antimicrobial activity from the methanolic extract of the leaves showed that the MIC and MMC values against the tested microorganisms ranged from 0.625 to 5 mg·mL−1 and that the extract was active against microorganisms, Staphyloccocus aureus, Escherichia coli, and Bacillus cereus.


Assuntos
Anti-Infecciosos , Flavanonas , Melastomataceae , Triterpenos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Flavanonas/farmacologia , Glicosídeos/farmacologia , Melastomataceae/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-34712353

RESUMO

Species of the genus Lippia are rich in essential oils and have shown antibacterial properties, which may be related to oils' chemical composition. The present work aimed to evaluate the antimicrobial potential of Lippia origanoides Kunth against two bacteria strains: Escherichia coli and Staphylococcus aureus. Leaf essential oils were obtained by hydrodistillation in a modified Clevenger-type apparatus, and their chemical composition was determined by gas chromatography coupled to mass spectrometry (GC/MS) and flame ionization detection (GC/FID). We identified 28 compounds, representing 98.87% of the total concentration of the essential oil. The compounds identified at the highest concentrations were 1,8-cineole (35.04%), carvacrol (11.32%), p-cymene (8.53%), α-pinene (7.17%), and γ-terpinene (7.16%). The leaf essential oil of L. origanoides showed antibacterial action on biological isolates of Escherichia coli and Staphylococcus aureus. For Escherichia coli, the oil presented bactericidal action at concentrations of 5-20 µL/mL. Regarding Staphylococcus aureus, the bactericidal effect was noted at 20 µL/mL and the bacteriostatic action was noted around 2.5-10 µL/mL. Given the results obtained, L. origanoides essential oil showed promising biological potential against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, thus encouraging further studies on substances isolated from this species to contribute to the development of new antimicrobial drugs.

9.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206169

RESUMO

In addition to the vast diversity of fauna and flora, the Brazilian Amazon has different climatic periods characterized by periods with greater and lesser rainfall. The main objective of this research was to verify the influence of climatic seasons in the Brazilian Amazon (northeast of Pará state) concerning the aromatic and bioactive profiles of fermented and dried cocoa seeds. About 200 kg of seeds was fermented using specific protocols of local producers. Physicochemical analyzes (total titratable acidity, pH, total phenolic compounds, quantification of monomeric phenolics and methylxanthines) and volatile compounds by GC-MS were carried out. We observed that: in the summer, the highest levels of aldehydes were identified, such as benzaldehyde (6.34%) and phenylacetaldehyde (36.73%), related to the fermented cocoa and honey aromas, respectively; and a total of 27.89% of this same class was identified during winter. There were significant differences (p ≤ 0.05, Tukey test) in the profile of bioactive compounds (catechin, epicatechin, caffeine, and theobromine), being higher in fermented almonds in winter. This study indicates that the climatic seasons in the Amazon affect the aromatic and bioactive profiles and could produce a new identity standard (summer and winter Amazon) for the cocoa almonds and their products.


Assuntos
Cacau , Ecossistema , Flavonoides , Fenóis , Estações do Ano , Sementes , Cacau/química , Cacau/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Odorantes , Fenóis/química , Fenóis/metabolismo , Sementes/química , Sementes/metabolismo
10.
Chem Biodivers ; 18(4): e2000982, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33587821

RESUMO

Bignonia nocturna (Bignoniaceae) is a plant used for medicinal purposes by the Amazonian indigenous peoples. To date, there have been no reported studies on its toxicity. The present study aimed to evaluate the chemical composition of essential oils obtained from Bignonia nocturna by different extraction techniques. In addition, an in silico study of the molecular interactions was performed using molecular docking and molecular dynamics. The extractions were carried out by hydrodistillation, simultaneous distillation-extraction, and steam distillation, using samples collected from the Amazon in summer and winter. The chemical composition was analyzed by GC/FID and GC/MS, and the cytotoxic activity in Artemia salina Leach was evaluated. The maximum yield (1.38 % w/w) was obtained by hydrodistillation. The results indicated that benzaldehyde predominated in all the fractions of both the volatile concentrate and the essential oils. In addition, the oil proved to be highly toxic to Artemia salina. The computer simulation results indicated that benzaldehyde strongly interacts with acetylcholinesterase, which is the likely interaction mechanism responsible for the cytotoxicity.


Assuntos
Artemia/efeitos dos fármacos , Bignoniaceae/química , Óleos Voláteis/toxicidade , Extratos Vegetais/toxicidade , Animais , Relação Dose-Resposta a Droga , Medicina Tradicional , Modelos Moleculares , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/química
11.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854178

RESUMO

The essential oil of Siparuna guianensis was obtained by hydrodistillation. The identification of the chemical compounds was performed by gas chromatography coupled with mass spectrometry (GC/MS). Antimicrobial activity was investigated for four microorganisms: Streptococcus mutans (ATCC 3440), Enterococcus faecalis (ATCC 4083), Escherichia coli (ATCC 25922), and Candida albicans (ATCC-10231). The studies of doping and molecular dynamics were performed with the molecule that presented the highest concentration of drug-target proteins, 1IYL (C. albicans), 1C14 (E. coli), 2WE5 (E. faecalis), and 4TQX (S. mutans). The main compounds identified were: Curzerene (7.1%), γ-Elemene (7.04%), Germacrene D (7.61%), trans-ß-Elemenone (11.78%), and Atractylone (18.65%). Gram positive bacteria and fungi were the most susceptible to the effects of the essential oil. The results obtained in the simulation showed that the major compound atractylone interacts with the catalytic sites of the target proteins, forming energetically favourable systems and remaining stable during the period of molecular dynamics.


Assuntos
Anti-Infecciosos , Bactérias/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Laurales/química , Simulação de Acoplamento Molecular , Óleos Voláteis , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/farmacologia
12.
Biomolecules ; 10(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630297

RESUMO

Spice plants have a great influence on world history. For centuries, different civilizations have used them to condiment the foods of kings and nobles and applied them as embalming preservatives, perfumes, cosmetics, and medicines in different regions of the world. In general, these plants have formed the basis of traditional medicine and some of their derived substances have been utilized to treat different human diseases. Essential oils (EOs) obtained from these plants have been also used as therapeutic agents and have shown supportive uses in remedial practices. The discovery and development of bioactive compounds from these natural products, based on their traditional uses, play an important role in developing the scientific evidence of their potential pharmaceutical, cosmetic, and food applications. In the present review, using recent studies, we exhibit a general overview of the main aspects related to the importance of spice plants widely used in traditional medicine: Cinnamomumzeylanicum (true cinnamon), Menthapiperita (peppermint), Ocimumbasilicum (basil), Origanumvulgare (oregano), Piper nigrum (black pepper), Rosmarinus officinalis (rosemary), and Thymus vulgaris (thyme); and we discuss new findings of the bioactive compounds obtained from their EOs, their potential applications, as well as their molecular mechanisms of action, focusing on their antioxidant activity. We also exhibit the main in vitro methods applied to determine the antioxidant activities of these natural products.


Assuntos
Antioxidantes/farmacologia , Óleos Voláteis/química , Origanum/química , Compostos Fitoquímicos/farmacologia , Thymus (Planta)/química , Antioxidantes/química , Cosméticos/química , Cosméticos/farmacologia , Indústria Alimentícia , Medicina Tradicional , Mentha piperita , Ocimum , Compostos Fitoquímicos/química , Óleos de Plantas/química , Especiarias
13.
J Chem Inf Model ; 60(2): 766-776, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31622091

RESUMO

Tobacco smoke contains various cancer-causing toxic substances, including nicotine and nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). The cytochrome 2A13 is involved in nicotine metabolism and in the activation of the pro-carcinogenic agents NNK and NNN, by means of α-hydroxylation reactions. Despite the significance of cytochrome 2A13 in the biotransformation of these molecules, its conformational mechanism and the molecular basis involved in the process are not fully understood. In this study, we used molecular dynamics and principal component analysis simulations for an in-depth analysis of the essential protein motions involved in the interaction of cytochrome 2A13 with its substrates. We also evaluated the interaction of these substrates with the amino acid residues in the binding pocket of cytochrome 2A13. Furthermore, we quantified the nature of these chemical interactions from free energy calculations using the Molecular Mechanics/Generalized Born Surface Area method. The ligands remained favorably oriented toward compound I (cytochrome P450 O═FeIV state), to undergo α-hydroxylation. The hydrogen bond with asparagine 297 was essential to maintaining the substrates in a favorable catalytic orientation. The plot of first principal motion vs second principal motion revealed that the enzyme's interaction with nicotine and NNK involved different conformational subgroups, whereas the conformational subgroups in the interaction with NNN are more similar. These results provide new mechanistic insights into the mode of interaction of the substrates with the active site of cytochrome 2A13, in the presence of compound I, which is essential for α-hydroxylation.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Simulação de Dinâmica Molecular , Nicotina/metabolismo , Nitrosaminas/metabolismo , Hidrocarboneto de Aril Hidroxilases/química , Biocatálise , Domínio Catalítico , Simulação de Acoplamento Molecular
14.
Materials (Basel) ; 12(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527423

RESUMO

A new prepared catalyst, 12-molybdophosphoric acid (HPMo) anchored to the mesoporous aluminosilicate AlSiM, synthesized from Amazon kaolin, was characterized and used as a heterogeneous acid catalyst for the production of eugenyl acetate by acetylation of eugenol with acetic anhydride. The effect of various reaction parameters, such as catalyst concentration, eugenol/acetic anhydride molar ratio, temperature and reaction time, was studied to optimize the conditions of maximum conversion of eugenol. The kinetics studies showed that in eugenol acetylation, the substrate concentration follows a first order kinetics. The results of activation energy was 19.96 kJ mol-1 for HPMo anchored to AlSiM. The reuse of the catalyst was also studied and there was no loss of catalytic activity after four cycles of use (from 99.9% in the first cycle to 90% in the fifth cycle was confirmed), and an excellent stability of the material was observed. Based on catalytic and kinetic studies, HPMo anchored to AlSiM is considered an excellent catalyst.

15.
Int J Mol Sci ; 16(10): 23881-904, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26473832

RESUMO

Myrcia is one of the largest genera of the economically important family Myrtaceae. Some of the species are used in folk medicine, such as a group known as "pedra-hume-caá" or "pedra-ume-caá" or "insulina vegetal" (insulin plant) that it is used for the treatment of diabetes. The species are an important source of essential oils, and most of the chemical studies on Myrcia describe the chemical composition of the essential oils, in which mono- and sesquiterpenes are predominant. The non-volatile compounds isolated from Myrcia are usually flavonoids, tannins, acetophenone derivatives and triterpenes. Anti-inflammatory, antinociceptive, antioxidant, antimicrobial activities have been described to Myrcia essential oils, while hypoglycemic, anti-hemorrhagic and antioxidant activities were attributed to the extracts. Flavonoid glucosides and acetophenone derivatives showed aldose reductase and α-glucosidase inhibition, and could explain the traditional use of Myrcia species to treat diabetes. Antimicrobial and anti-inflammatory are some of the activities observed for other isolated compounds from Myrcia.


Assuntos
Medicina Tradicional , Myrtaceae/metabolismo , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...