Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 83: 127404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364464

RESUMO

BACKGROUND: Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS: The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS: A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION: MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.


Assuntos
Leishmania tropica , Leishmaniose Cutânea , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Prata/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia
2.
Curr Med Chem ; 29(26): 4547-4573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220932

RESUMO

Leishmaniasis, a cutaneous, mucocutaneous, or visceral parasitic disease caused by the protozoa of the genus Leishmania, is responsible for approximately 20-40 thousand deaths annually, with Brazil, India, and certain countries in Africa being the most affected. In addition to the parasite's ability to evade the host's immune system, the incidence of vectors, genetics of different hosts, and several deaths are attributed to the limited conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutic strategies remains warranted. Metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have shown promising therapeutic tools since they are easily prepared and chemically modified, have a broad spectrum of action and low toxicity, and can generate reactive oxygen species and other immune responses. This review explores the progress of the use of metallic nanoparticles as new tools in the treatment of leishmaniasis and discusses the gaps in knowledge hindering the development of a safe and effective therapeutic intervention against these infections.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Cutânea , Leishmaniose , Nanopartículas Metálicas , Antiprotozoários/uso terapêutico , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...