Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Nat Ecol Evol ; 8(5): 901-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467713

RESUMO

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.


Assuntos
Biodiversidade , Inundações , Rios , Árvores , Brasil , Florestas
3.
Nature ; 625(7996): 728-734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200314

RESUMO

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Assuntos
Florestas , Árvores , Clima Tropical , Biodiversidade , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , África , Sudeste Asiático
4.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938615

RESUMO

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Assuntos
RNA Longo não Codificante , Árvores , Florestas , Solo , Temperatura
5.
Science ; 382(6666): 103-109, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797008

RESUMO

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.


Assuntos
Arqueologia , Florestas , Humanos , Brasil
6.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801913

RESUMO

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima Tropical
7.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576943

RESUMO

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Assuntos
Biodiversidade , Classificação/métodos , Florestas , Rios , Árvores/classificação , Brasil
8.
Sci Rep ; 8(1): 1003, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343741

RESUMO

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Brasil , Chrysobalanaceae/fisiologia , Fabaceae/fisiologia , Humanos , Polygonaceae/fisiologia
9.
Sci Adv ; 1(10): e1500936, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702442

RESUMO

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

10.
Rev. biol. trop ; 59(4): 1927-1938, Dec. 2011. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-646562

RESUMO

The Amazon region is one of the most diverse areas in the world. Research on high tropical forest diversity brings up relevant contributions to understand the mechanisms that result and support such diversity. In the present study we describe the species composition and diversity of 15 one-ha plots in the Amazonian terra firme dense forest in Brazil, and compare the floristic similarity of these plots with other nine one-ha plots. The 15 plots studied were randomly selected from permanent plots at the Embrapa Experimental site, Amazonas State in 2005. The diversity was analysed by using species richness and Shannon’s index, and by applying the Sorensen’s index for similarity and unweighted pair-group average (UPGMA) as clustering method. Mantel test was performed to study whether the differences in species composition between sites could be explained by the geographic distance between them. Overall, we identified 8 771 individuals, 264 species and 51 plant families. Most of the species were concentrated in few families and few had large number of individuals. Families presenting the highest species richness were Fabaceae (Faboideae: 22spp., Mimosoideae: 22spp.), Sapotaceae: 22spp., Lecythidaceae: 15 and Lauraceae: 13. Burseraceae had the largest number of individuals with 11.8% of the total. The ten most abundant species were: Protium hebetatum (1 037 individuals), Eschweilera coriacea (471), Licania oblongifolia (310), Pouteria minima (293), Ocotea cernua (258), Scleronema micranthum (197), Eschweilera collina (176), Licania apelata (172), Naucleopsis caloneura (170) and Psidium araca (152), which represented 36.5% of all individuals. Approximately 49% of species had up to ten individuals and 13% appeared only once in all sampled plots, showing a large occurrence of rare species. Our study area is on a forest presenting a high tree species diversity with Shannon’s diversity index of 4.49. The dendrogram showed two groups of plots with low similarity between them (less than 0.25), and the closer the plots were one to another, more similar in species composition (Mantel R=0.3627, p<0.01). The 15 plots in our study area share more than 50% of their species composition and represent the group of plots that have the shortest distance between each other. Overall, our results highlight the high local and regional heterogeneity of environments in terra firme forests, and the high occurrence of rare species, which should be considered in management and conservation programs in the Amazon rainforest, in order to maintain its structure on the long run. Rev. Biol. Trop. 59 (4): 1927-1938. Epub 2011 December 01.


La región amazónica es una de las más diversas áreas del mundo. Los estudios sobre la gran diversidad de bosques tropicales generan contribuciones relevantes en la comprensión de los mecanismos que originan y apoyan tal diversidad. En el presente estudio se describe la composición de las especies y la diversidad de 15 parcelas de una hectárea en el bosque denso amazónico terra firme en Brasil, y compara la similitud florística de estas parcelas con otras nueve parcelas de una hectárea. Las 15 parcelas estudiadas fueron seleccionadas al azar, en el 2005, de parcelas permanentes en el sitio experimental de Embrapa, Estado de Amazonas. La diversidad fue analizada utilizando la riqueza de especies y el índice de Shannon, así como el índice de Similitud de Sorensen; y como método de agrupación se utilizó el promedio no ponderado por grupo (UPGMA). La prueba de Mantel se llevó a cabo para estudiar si las diferencias en la composición de especies entre los sitios podrían ser explicadas por la distancia geográfica entre ellos. En general, se identificaron 8 771 individuos, 264 especies y 51 familias de plantas. La mayoría de las especies se concentraron en pocas familias y pocas tenían un gran número de individuos. Las familias que presentaron la mayor riqueza de especies fueron: Fabaceae (Faboideae: 22spp, Mimosoideae: 22spp), Sapotaceae: 22spp, Lecythidaceae: 15 y Lauraceae: 13. Burseraceae tuvo el mayor número de individuos con un 11.8% del total. Las diez especies más abundantes fueron: Protium hebetatum (1 037 individuos), Eschweilera coriacea (471), Licania oblongifolia (310), Pouteria minima (293), Ocotea cernua (258), Scleronema micranthum (197), Eschweilera collina (176), Licania apelata (172), Naucleopsis caloneura (170) y Psidium araca (152), que representó un 36.5% de todos los individuos. Aproximadamente en el 49% de las especies se encontraron hasta diez individuos, mientras que el 13% de las especies apareció sólo una vez en todas las parcelas de muestreo, lo que demuestra una alta presencia de especies raras. La zona de estudio se encuentra en un bosque con alta diversidad de especies de árboles, con un índice de diversidad de Shannon de 4.49. El dendrograma mostró dos grupos de parcelas con baja similitud entre ellas (menos de 0.25), y entre más cercanas las parcelas, más similares en composición de especies fueron (Mantel R=0.3627, p<0.01). Las 15 parcelas en nuestra área de estudio compartieron más del 50% de su composición de especies y representaron el grupo de parcelas con la menor distancia entre ellas. En general, nuestros resultados ponen de manifiesto la alta heterogeneidad local y regional de los ambientes de los bosques de terra firme, y la gran concurrencia de especies raras, lo cual debe ser considerado en los planes de manejo y conservación de la selva amazónica, con el fin de mantener su estructura a largo plazo.


Assuntos
Biodiversidade , Árvores/classificação , Biomassa , Brasil , Monitoramento Ambiental , Especificidade da Espécie , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...