Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artif. organs ; 48(2): 141-149, fev.2024.
Artigo em Inglês | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1525065

RESUMO

BACKGROUND: The reactivity of blood with non-endothelial surface is a challenge for long-term Ventricular Assist Devices development, usually made with pure titanium, which despite of being inert, low density and high mechanical resistance it does not avoid the thrombogenic responses. Here we tested a modification on the titanium surface with Laser Induced Periodic Surface Structures followed by Diamond Like Carbon (DLC) coating in different thicknesses to customize the wettability profile by changing the surface energy of the titanium. METHODS: Four different surfaces were proposed: (1) Pure Titanium as Reference Material (RM), (2) Textured as Test Sample (TS), (3) Textured with DLC 0.3µm as (TSA) and (4) Textured with 2.4µm DLC as (TSB). A single implant was positioned in the abdominal aorta of Wistar rats and the effects of hemodynamic interaction were evaluated without anticoagulant drugs. RESULTS: After twelve weeks, the implants were extracted and subjected to qualitative analysis by Scanning Electron Microscopy under low vacuum and X-ray Energy Dispersion. The regions that remained in contact with the wall of the aorta showed encapsulation of the endothelial tissue. TSB implants, although superhydrophilic, have proven that the DLC coating inhibits the adhesion of biological material, prevents abrasive wear and delamination, as observed in the TS and TSA implants. Pseudo- neointimal layers were heterogeneously identified in higher concentration on Test Surfaces.


Assuntos
Teste de Materiais , Coração Auxiliar , Molhabilidade
2.
Artif Organs ; 48(2): 141-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018258

RESUMO

BACKGROUND: The reactivity of blood with non-endothelial surface is a challenge for long-term Ventricular Assist Devices development, usually made with pure titanium, which despite of being inert, low density and high mechanical resistance it does not avoid the thrombogenic responses. Here we tested a modification on the titanium surface with Laser Induced Periodic Surface Structures followed by Diamond Like Carbon (DLC) coating in different thicknesses to customize the wettability profile by changing the surface energy of the titanium. METHODS: Four different surfaces were proposed: (1) Pure Titanium as Reference Material (RM), (2) Textured as Test Sample (TS), (3) Textured with DLC 0.3µm as (TSA) and (4) Textured with 2.4µm DLC as (TSB). A single implant was positioned in the abdominal aorta of Wistar rats and the effects of hemodynamic interaction were evaluated without anticoagulant drugs. RESULTS: After twelve weeks, the implants were extracted and subjected to qualitative analysis by Scanning Electron Microscopy under low vacuum and X-ray Energy Dispersion. The regions that remained in contact with the wall of the aorta showed encapsulation of the endothelial tissue. TSB implants, although superhydrophilic, have proven that the DLC coating inhibits the adhesion of biological material, prevents abrasive wear and delamination, as observed in the TS and TSA implants. Pseudo- neointimal layers were heterogeneously identified in higher concentration on Test Surfaces.


Assuntos
Carbono , Titânio , Ratos , Animais , Propriedades de Superfície , Titânio/química , Ratos Wistar , Teste de Materiais , Carbono/química , Aorta , Materiais Revestidos Biocompatíveis/química
3.
Artif Organs ; 44(8): 779-784, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31612546

RESUMO

This study presents an assessment for long-term use of the apical aortic blood pump (AABP), focusing on wear reduction in the bearing system. AABP is a centrifugal left ventricle assist device initially developed for bridge to transplant application. To analyze AABP performance in long-term applications, a durability test was performed. This test indicated that wear in the lower bearing pivot causes device failure in long-term. A wear test in the bearing system was conducted to demonstrate the correlation of the load in the bearing system with wear. Results from the wear test showed a direct correlation between load and wear at the lower bearing pivot. In order to reduce load, thus reducing wear, a new stator topology has been proposed. In this topology, a radial stator would replace the axial stator previously used. Another durability test with the new stator has accounted twice the time without failure when compared with the original model.


Assuntos
Coração Auxiliar , Aorta/fisiologia , Análise de Falha de Equipamento , Coração Auxiliar/efeitos adversos , Humanos , Desenho de Prótese , Falha de Prótese , Fatores de Tempo
4.
Artif Organs ; 44(8): 797-802, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31437303

RESUMO

Congestive heart failure is a pathology of global incidence that affects millions of people worldwide. When the heart weakens and fails to pump blood at physiological rates commensurate with the requirements of tissues, two main alternatives are cardiac transplant and ventricular assist devices (VADs). This article presents the design strategy for development of a customized VAD electromagnetic actuator. Electromagnetic actuator is a brushless direct current motor customized to drive the pump impeller by permanent magnets located in rotor-stator coupling. In this case, ceramic pivot bearings support the VAD impeller. Electronic circuitry controls rotation switching current in stator coils. The proposed methodology consisted of analytical numerical design, tridimensional computational modeling, numerical simulations using Maxwell software, actuator prototyping, and validation in the dynamometer. The axial flow actuator was chosen by its size and high power density compared to the radial flow type. First step consisted of estimating the required torque to drive the pump. Torque was estimated at 2100 rpm and mean current of 0.5 A. Numerical analysis using finite element method mapped vectors and fields to build stator coils and actuator assemblage. After tests in the dynamometer, experimental results were compared with numerical simulation and validated the proposed model. In conclusion, the proposed methodology for designing of VAD electromechanical actuator was considered satisfactory in terms of data consistency, feasibility, and reliability.


Assuntos
Coração Auxiliar , Desenho de Prótese , Fenômenos Eletromagnéticos , Humanos , Modelos Biológicos , Desenho de Prótese/métodos , Torque
5.
Artif Organs ; 37(11): 973-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24219301

RESUMO

Fractures in stents are usually detected by visual analysis, which may be affected by the presence of noise and image deformations. The lack of research into automating stent fracture detection has motivated this work, in which techniques are developed to facilitate diagnosis by observation (Image Delineation Algorithm) and, when possible, to point out areas of possible fractures (Fracture Detection Algorithm). The use of classical elements and the development of additional computational techniques contributed to the process of image analysis, providing a possible way to aid medical diagnosis. The developed algorithms are applied to image samples from femoropopliteal arteries, and the results are compared to those of medical diagnosis. As a result, aside from the improvement of image display, a kappa concordance index of 0.878 for the detection of fractures confirms the method as satisfactory, with very good agreement with medical diagnosis.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Falha de Prótese , Stents , Artérias/cirurgia , Humanos
6.
Artif Organs ; 32(4): 334-41, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18370950

RESUMO

This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (São Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politécnica of São Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD.


Assuntos
Coração Auxiliar , Hemorreologia , Magnetismo , Centrifugação , Desenho de Equipamento , Humanos , Teste de Materiais , Modelos Teóricos , Projetos Piloto , Rotação
7.
Artif Organs ; 32(4): 349-54, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18370952

RESUMO

This work presents the initial studies and the proposal for a cardiovascular system electro-fluid-dynamic simulator to be applied in the development of left ventricular assist devices (LVADs). The simulator, which is being developed at University Sao Judas Tadeu and at Institute Dante Pazzanese of Cardiology, is composed of three modules: (i) an electrical analog model of the cardiovascular system operating in the PSpice electrical simulator environment; (ii) an electronic controller, based on laboratory virtual instrumentation engineering workbench (LabVIEW) acquisition and control tool, which will act over the physical simulator; and (iii) the physical simulator: a fluid-dynamic equipment composed of pneumatic actuators and compliance tubes for the simulation of active cardiac chambers and big vessels. The physical simulator (iii) is based on results obtained from the electrical analog model (i) and physiological parameters.


Assuntos
Simulação por Computador , Coração Auxiliar , Hemorreologia , Modelos Cardiovasculares , Fenômenos Biomecânicos , Vasos Sanguíneos/fisiologia , Desenho de Equipamento , Humanos , Projetos Piloto , Função Ventricular
8.
Rev Bras Cir Cardiovasc ; 22(2): 224-34, 2007.
Artigo em Inglês, Português | MEDLINE | ID: mdl-17992328

RESUMO

INTRODUCTION: This paper addresses an original project that encompasses the conception, development and clinical application of a helical bypass pump called the Spiral Pump, that uses the association of centrifugal and axial propulsion forces based de the Archimedes principle. This project has obtained a Brazilian Patent and an International Preliminary Report, defining it as an invention. METHODS: The aim of this work was to evaluate the hemodynamic capacity and the impact of its application on blood cells by means of experimental in vitro tests, including hydrodynamic efficiency, effect on hemolysis and flow visualization. Moreover, in vivo experimental tests were carried out on lambs that were submitted to cardiopulmonary bypass for six hours and in 43 patients submitted to heart bypass surgery using the Spiral Pump. RESULTS: When the rotor-plastic casing gap was 1.5mm, the flow generated was nearly 9 L/min, the pressure was greater than 400 mmHg at 1500 rpm, and the normalized hemolytic indexes were not greater than 0.0375 g/100L in high-flow and pressure conditions. Additionally, by the flow visualization techniques, stagnation was not seen inside the pump nor was turbulence identified at the entrance or exit of the pump, or at the ends of the spindles. In the in vivo tests using cardiopulmonary bypasses for 6 hours in lambs, the pump maintained adequate pressure rates and the free hemoglobin levels ranged between 16.36 mg% and 44.90 mg%. Evaluating the results of the 43 patients who used this pump in heart bypass operations we observed that the free hemoglobin ranged from 9.34 mg% before to 44.16 mg% after surgery, the serum fibrinogen was from 236.65 mg% to 547.26mg%, platelet blood count from 152,465 to 98,139 and the lactic dehydrogenase from 238.12mg% to 547.26mg%. The Activated Coagulation Time was close to 800 seconds during the bypass. CONCLUSION: The Spiral Pump was very effective in generating adequate flow and pressure and caused no excessive harm to the blood cells.


Assuntos
Circulação Extracorpórea/instrumentação , Cardiopatias/cirurgia , Coração Auxiliar/normas , Hemólise , Análise de Variância , Animais , Materiais Biocompatíveis , Velocidade do Fluxo Sanguíneo , Brasil , Desenho de Equipamento , Segurança de Equipamentos , Coração Artificial , Humanos , Modelos Cardiovasculares , Patentes como Assunto , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA