Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 156: 109832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761450

RESUMO

Crack cocaine is a highly addictive and potent stimulant drug. Animal studies have shown that the cholinergic system plays a role in neurotoxicity induced by cocaine or its active metabolites inhalation. Behavioral alterations associated with crack cocaine use include hyperactivity, depressed mood, and decreased seizure threshold. Here we evaluate the acetylcholinesterase (AChE) and reactive oxygen species (ROS) activity, behavioral profile, and the threshold for epileptic seizures in rats that received intrahippocampal pilocarpine (H-PILO) followed by exposure to crack cocaine (H-PILO + CRACK). Animals exposed to H-PILO + CRACK demonstrated increased severity and frequency of limbic seizures. The AChE activity was reduced in the groups exposed to crack cocaine alone (CRACK) and H-PILO + CRACK, whereas levels of ROS remained unchanged. In addition, crack cocaine exposure increased vertical locomotor activity, without changing water and sucrose intake. Short-term memory consolidation remained unchanged after H-PILO, H-PILO + CRACK, and CRACK administration. Overall, our data suggest that crack cocaine inhalation reduced the threshold for epileptic seizures in rats submitted to low doses of pilocarpine through the inhibition of AChE. Taken together, our findings can be useful in the development of effective strategies for preventing and treating the harmful effects of cocaine and crack cocaine on the central nervous system.


Assuntos
Acetilcolinesterase , Cocaína Crack , Pilocarpina , Ratos Wistar , Convulsões , Animais , Masculino , Acetilcolinesterase/metabolismo , Ratos , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Administração por Inalação , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Atividade Motora/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
2.
Mol Neurobiol ; 59(12): 7354-7369, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36171480

RESUMO

Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).


Assuntos
Epilepsia do Lobo Temporal , Fármacos Neuroprotetores , Estado Epiléptico , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Galectina 1/farmacologia , Galectina 1/uso terapêutico , Galectina 1/metabolismo , Ratos Wistar , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Pilocarpina , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Convulsões/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA