Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26651710

RESUMO

The evolution of the surface roughness W of a thin film deposited on a rough substrate is studied with a model of temperature-activated adatom diffusion, irreversible lateral aggregation, and no step energy barrier, in which the main parameter is the ratio R of diffusion and deposition rates. At sufficiently low temperatures (R≲10), the average number of adatom steps after adsorption is very small, thus W monotonically increases with time t due to an approximately uncorrelated deposition at short times. If the temperature is not very low (R∼10(3) or larger), smoothening occurs at short times and the Villain-Lai-Das Sarma (VLDS) growth equation governs the long time roughening, which is attained after a crossover time t(c) that increases with the correlation length ξ(i) of the substrate. Scaling arguments predict the dependence of t(c) on temperature and on the substrate production time and the scaling relation for the difference between the roughness of films deposited on rough and flat substrates, in good agreement with numerical results. The effect of temperature is not a direct extension of previous results on flat substrates because the short wavelength fluctuations delay the formation of terraces. For this reason, the effective energy obtained from the dependence of t(c) on R is 40% of the energy of activated adatom diffusion. A scaling law for the initial smoothening is proposed as W/W(i)=Ψ(t/t(c1)), with a crossover time t(c1)≡R(-θ)ξ(i)(z), where W(i) is the substrate roughness, θ≈0.4, and z is the VLDS dynamical exponent. It provides good data collapse if W is not very small and is suggested to be tested experimentally.

2.
Sci Rep ; 5: 10175, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26035290

RESUMO

This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density (JM) and the characteristic kernel current density (JkC), JM ≈ [JkC]ßH, with an H-dependent exponent ßH > 1, has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (0.5 ≤ H ≤ 0.9), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent ßH must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot.

3.
J Phys Condens Matter ; 26(44): 445007, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25287641

RESUMO

This work considers the behavior of the height distributions of the equipotential lines in a region confined by two interfaces: a cathode with an irregular interface and a distant flat anode. Both boundaries, which are maintained at distinct and constant potential values, are assumed to be conductors. The morphology of the cathode interface results from the deposit of 2 × 10(4) monolayers that are produced using a single competitive growth model based on the rules of the Restricted Solid on Solid and Ballistic Deposition models, both of which belong to the Kadar-Parisi-Zhang (KPZ) universality class. At each time step, these rules are selected with probability p and q = 1 - p. For several irregular profiles that depend on p, a family of equipotential lines is evaluated. The lines are characterized by the skewness and kurtosis of the height distribution. The results indicate that the skewness of the equipotential line increases when they approach the flat anode and this increase has a non-trivial convergence to a delta distribution that characterizes the equipotential line in a uniform electric field. The morphology of the equipotential lines is discussed; the discussion emphasizes their features for different ranges of p that correspond to positive, null and negative values of the coefficient of the non-linear term in the KPZ equation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25019792

RESUMO

The global effects of sudden changes in the interface growth dynamics are studied using models of the Edwards-Wilkinson (EW) and Kardar-Parisi-Zhang (KPZ) classes during their growth regimes in dimensions d=1 and d=2. Scaling arguments and simulation results are combined to predict the relaxation of the difference in the roughness of the perturbed and the unperturbed interfaces, ΔW^{2}∼s{c}t{-γ}, where s is the time of the change and t>s is the observation time after that event. The previous analytical solution for the EW-EW changes is reviewed and numerically discussed in the context of lattice models, with possible decays with γ=3/2 and γ=1/2. Assuming the dominant contribution to ΔW{2} to be predicted from a time shift in the final growth dynamics, the scaling of KPZ-KPZ changes with γ=1-2ß and c=2ß is predicted, where ß is the growth exponent. Good agreement with simulation results in d=1 and d=2 is observed. A relation with the relaxation of a local autoresponse function in d=1 cannot be discarded, but very different exponents are shown in d=2. We also consider changes between different dynamics, with the KPZ-EW as a special case in which a faster growth, with dynamical exponent z_{i}, changes to a slower one, with exponent z. A scaling approach predicts a crossover time t_{c}∼s{z/z_{i}}≫s and ΔW{2}∼s{c}F(t/t_{c}), with the decay exponent γ=1/2 of the EW class. This rules out the simplified time shift hypothesis in d=2 dimensions. These results help to understand the remarkable differences in EW smoothing of correlated and uncorrelated surfaces, and the approach may be extended to sudden changes between other growth dynamics.


Assuntos
Cristalização/métodos , Modelos Químicos , Propriedades de Superfície , Simulação por Computador , Transição de Fase
5.
J Phys Condens Matter ; 25(28): 285106, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23803282

RESUMO

In this work, we present systematic theoretical evidence of a relationship between the point local roughness exponent (PLRE) (which quantifies the heterogeneity of an irregular surface) and the cold field emission properties (indicated by the local current density and the macroscopic current density) of real polyaniline (PANI) surfaces, considered nowadays as very good candidates in the design of field emission devices. The latter are obtained from atomic force microscopy data. The electric field and potential are calculated in a region bounded by the rough PANI surface and a distant plane, both boundaries held at distinct potential values. We numerically solve Laplace's equation subject to appropriate Dirichlet's condition. Our results show that local roughness reveals the presence of specific sharp emitting spots with a smooth geometry, which are the main ones responsible (but not the only) for the emission efficiency of such surfaces for larger deposition times. Moreover, we have found, with a proper choice of a scale interval encompassing the experimentally measurable average grain length, a highly structured dependence of local current density on PLRE, considering different ticks of PANI surfaces.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051607, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214793

RESUMO

This work investigates the scaled height distribution, ρ(q), of irregular profiles that are grown based on two sets of local rules: those of the restricted solid on solid (RSOS) and ballistic deposition (BD) models. At each time step, these rules are respectively chosen with probability p and r=1-p. Large-scale Monte Carlo simulations indicate that the system behaves differently in three succeeding intervals of values of p: I(B) ≈ [0,0.75),I(T) ≈ (0.75,0.9), and I(R) ≈ (0.9,1.0]. In I(B), the ballistic character prevails: the growth velocity υ(∞) decreases with p in a linear way, and similar behavior is found for Γ(∞) (p), the amplitude of the t(1/3)-fluctuations, which is measured from the second-order height cumulant. The distribution of scaled height fluctuations follows the Gaussian orthogonal ensemble (GOE) Tracy-Widom (TW) distribution with resolution roughly close to 10(-4). The skewness and kurtosis of the computed distribution coincide with those for TW distribution. Similar results are observed in the interval I(R), with prevalent RSOS features. In this case, the skewness become negative. In the transition interval I(T), the system goes smoothly from one regime to the other: the height distribution becomes apparently Gaussian, which motivates us to identify this phenomenon as a transition from Kardar-Parisi-Zhang (KPZ) behavior to Edwards-Wilkinson (EW) behavior back to KPZ behavior.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Modelos Estatísticos , Nanopartículas/química , Nanopartículas/ultraestrutura , Simulação por Computador , Conformação Molecular , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...