Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 116(2): 110802, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290593

RESUMO

Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.


Assuntos
Linguados , MicroRNAs , Animais , Transcriptoma , MicroRNAs/genética , Coluna Vertebral/anormalidades , Coluna Vertebral/patologia , Osso e Ossos , Linguados/genética
2.
Animals (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374441

RESUMO

The high incidence of skeletal anomalies in Senegalese sole (Solea senegalensis) still constitutes a bottleneck constraining its production. There are diverse commercially available products for the enrichment of live preys, but few reports of their influence on skeletogenesis in Senegalese sole. This study evaluated the presence of vertebral anomalies in postlarvae and juvenile Senegalese sole fed with Artemia spp. metanauplii enriched with four commercial products (EA, EB, EC, and ED) in a fish farm. The most frequent alterations consisted of deformations of the neural/haemal arches and spines and fusions and deformations of hypurals, epural, or parhypural. The correspondence analysis ordered fish from each age in separated semiaxis, indicating the presence of different anomaly patterns for the two sampled stages. The results showed only very light changes in the frequency of vertebral abnormalities among tested enrichment products, i.e., individuals from EC and EA lots displayed less vertebral body anomalies and/or vertebral column deviations at 31 and 105 days after hatching, respectively. The existence of a large shared malformation pattern in all the experimental groups leads to impute to the rearing conditions as the main driving factor of the onset of such group of anomalies, probably masking some dietary effect.

3.
Vet Pathol ; 56(2): 307-316, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30278833

RESUMO

Skeletal anomalies affect animal welfare and cause important economic problems in aquaculture. Despite the high frequency of skeletal problems in reared Solea senegalensis, there is lack of information regarding the histological features of normal and deformed vertebrae in this flatfish. The aim of this study was to describe the histopathological and radiographical appearance of vertebral body anomalies. Sixty-seven juvenile fish were radiographically examined 104 or 105 days after hatching. Through radiographic images, vertebral segments were selected and processed for histopathological examination from 7 normal and 7 affected fish. Alterations in bone shape and vertebral fusion were the most significant anomalies in the vertebral bodies. These alterations occurred most frequently between the last 3 abdominal vertebrae and the first 10 caudal centra. Radiographically, deformed vertebrae showed flattening of the endplates and narrowing of the intervertebral spaces. The radiographic findings concurred with the histological lesions where affected vertebrae exhibited irregular endplates and changes in trabecular bone. Radiolucent cartilaginous tissue was evident in the endplates of the deformed vertebra and, in some cases, the cartilaginous material extended from the growth zone into the intervertebral space. These changes were likely the primary alterations that led to vertebral fusion. Fused vertebrae were often reshaped and showed a reorganization of the trabeculae. The formation of metaplastic cartilage is frequent in a variety of anomalies affecting teleost species.


Assuntos
Osso e Ossos/anormalidades , Linguados/anormalidades , Animais , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Radiografia/veterinária , Coluna Vertebral/anormalidades , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/patologia
4.
J Fish Dis ; 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882280

RESUMO

Zebrafish has become a popular research model in the last years, and several diseases affecting zebrafish research facilities have been reported. However, only one case of naturally occurring viral infections was described for this species. In 2015, infectious spleen and kidney necrosis virus (ISKNV) was detected in zebrafish from a research facility in Spain. Affected fish showed lethargy, loss of appetite, abnormal swimming, distention of the coelomic cavity and, in the most severe cases, respiratory distress, pale gills and petechial haemorrhages at the base of fins. Cytomegaly was the most relevant histopathological finding in organs and tissues, sometimes associated to degenerative and necrotic changes. ISKNV belongs to the relatively newly defined genus Megalocytivirus, family Iridoviridae, comprising large, icosahedral cytoplasmic DNA viruses. This is the first case of naturally occurring Megalocytivirus infection in zebrafish research facilities, associated with morbidity. The virus has been identified based on both pathologic and genetic evidence, to better understand the pathogenesis of the infection in zebrafish and the phylogenetic relationship with other iridoviruses. Given the ability of megalocytiviruses to cross-species boundaries, it seems necessary to implement stringent biosecurity practices as these infections may invalidate experimental data and have major impact on laboratory and cultured fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...