Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 8(37): 34084-34090, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744849

RESUMO

In tropical and subtropical areas, malaria stands as a profound public health challenge, causing an estimated 247 million cases worldwide annually. Given the absence of a viable vaccine, the timely and effective treatment of malaria remains a critical priority. However, the growing resistance of parasites to currently utilized drugs underscores the critical need for the identification of new antimalarial therapies. Here, we aimed to identify potential new drug candidates against Plasmodium falciparum, the main causative agent of malaria, by analyzing the transcriptomes of different life stages of the parasite and identifying highly expressed genes. We searched for genes that were expressed in all stages of the parasite's life cycle, including the asexual blood stage, gametocyte stage, liver stage, and sexual stages in the insect vector, using transcriptomics data from publicly available databases. From this analysis, we found 674 overlapping genes, including 409 essential ones. By searching through drug target databases, we discovered 70 potential drug targets and 75 associated bioactive compounds. We sought to expand this analysis to similar compounds to known drugs. So, we found a list of 1557 similar compounds, which we predicted as actives and inactives using previously developed machine learning models against five life stages of Plasmodium spp. From this analysis, two compounds were selected, and the reactions were experimentally evaluated. The compounds HSP-990 and silvestrol aglycone showed potent inhibitory activity at nanomolar concentrations against the P. falciparum 3D7 strain asexual blood stage. Moreover, silvestrol aglycone exhibited low cytotoxicity in mammalian cells, transmission-blocking potential, and inhibitory activity comparable to those of established antimalarials. These findings warrant further investigation of silvestrol aglycone as a potential dual-acting antimalarial and transmission-blocking candidate for malaria control.

2.
Sci Rep ; 13(1): 12721, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543642

RESUMO

The expansion of bean genome technologies has prompted new perspectives on generating resources and knowledge essential to research and implementing biotechnological tools for the practical operations of plant breeding programs. This study aimed to resequence the entire genome (whole genome sequencing-WGS) of 40 bean genotypes selected based on their significance in breeding programs worldwide, with the objective of generating an extensive database for the identification of single nucleotide polymorphisms (SNPs). Over 6 million SNPs were identified, distributed across the 11 bean chromosomes. After quality variant filtering, 420,509 high-quality SNPs were established, with an average of 38,228 SNPs per chromosome. These variants were categorized based on their predicted effects, revealing that the majority exerted a modifier impact on non-coding genome regions (94.68%). Notably, a significant proportion of SNPs occurred in intergenic regions (62.89%) and at least one SNP was identified in 58.63% of the genes annotated in the bean genome. Of particular interest, 7841 SNPs were identified in 85% of the putative plant disease defense-related genes, presenting a valuable resource for crop breeding efforts. These findings provide a foundation for the development of innovative and broadly applicable technologies for the routine selection of superior genotypes in global bean improvement and germplasm characterization programs.


Assuntos
Phaseolus , Phaseolus/genética , Genoma de Planta/genética , Melhoramento Vegetal , Análise de Sequência de DNA , Genótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...