Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Rev Entomol ; 67: 143-161, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34606363

RESUMO

Hyperparasitoids are some of the most diverse members of insect food webs. True hyperparasitoids parasitize the larvae of other parasitoids, reaching these larvae with their ovipositor through the herbivore that hosts the parasitoid larva. During pupation, primary parasitoids also may be attacked by pseudohyperparasitoids that lay their eggs on the parasitoid (pre)pupae. By attacking primary parasitoids, hyperparasitoids may affect herbivore population dynamics, and they have been identified as a major challenge in biological control. Over the past decades, research, especially on aphid- and caterpillar-associated hyperparasitoids, has revealed that hyperparasitoids challenge rules on nutrient use efficiency in trophic chains, account for herbivore outbreaks, or stabilize competitive interactions in lower trophic levels, and they may use cues derived from complex interaction networks to locate their hosts. This review focuses on the fascinating ecology of hyperparasitoids related to how they exploit and locate their often inconspicuous hosts and the insect community processes in which hyperparasitoids are prominent players.


Assuntos
Vespas , Animais , Ecologia , Cadeia Alimentar , Interações Hospedeiro-Parasita , Larva
2.
Behav Ecol ; 32(5): 952-960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690548

RESUMO

Animals can alter their foraging behavior through associative learning, where an encounter with an essential resource (e.g., food or a reproductive opportunity) is associated with nearby environmental cues (e.g., volatiles). This can subsequently improve the animal's foraging efficiency. However, when these associated cues are encountered again, the anticipated resource is not always present. Such an unrewarding experience, also called a memory-extinction experience, can change an animal's response to the associated cues. Although some studies are available on the mechanisms of this process, they rarely focus on cues and rewards that are relevant in an animal's natural habitat. In this study, we tested the effect of different types of ecologically relevant memory-extinction experiences on the conditioned plant volatile preferences of the parasitic wasp Cotesia glomerata that uses these cues to locate its caterpillar hosts. These extinction experiences consisted of contact with only host traces (frass and silk), contact with nonhost traces, or oviposition in a nonhost near host traces, on the conditioned plant species. Our results show that the lack of oviposition, after contacting host traces, led to the temporary alteration of the conditioned plant volatile preference in C. glomerata, but this effect was plant species-specific. These results provide novel insights into how ecologically relevant memory-extinction experiences can fine-tune an animal's foraging behavior. This fine-tuning of learned behavior can be beneficial when the lack of finding a resource accurately predicts current, but not future foraging opportunities. Such continuous reevaluation of obtained information helps animals to prevent maladaptive foraging behavior.

3.
J Chem Ecol ; 47(8-9): 810-818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34463894

RESUMO

Adults of many mosquito species feed on plants to obtain metabolic energy and to enhance reproduction. Mosquitoes primarily rely on olfaction to locate plants and are known to respond to a range of plant volatiles. We studied the olfactory response of the yellow fever mosquito Aedes aegypti to methyl jasmonate (MeJA) and cis-jasmone (CiJA), volatile compounds originating from the octadecanoid signaling pathway that plays a key role in plant defense against herbivores. Specifically, we investigated how Ae. aegypti of different ages responded to elevated levels of CiJA in two attractive odor contexts, either derived from Lima bean plants or human skin. Aedes aegypti females landed significantly less often on a surface with CiJA and MeJA compared to the solvent control, CiJA exerting a stronger reduction in landing than MeJA. Odor context (plant or human) had no significant main effect on the olfactory responses of Ae. aegypti females to CiJA. Mosquito age significantly affected the olfactory response, older females (7-9 d) responding more strongly to elevated levels of CiJA than young females (1-3 d) in either odor context. Our results show that avoidance of CiJA by Ae. aegypti is independent of odor background, suggesting that jasmonates are inherently aversive cues to these mosquitoes. We propose that avoidance of plants with elevated levels of jasmonates is adaptive to mosquitoes to reduce the risk of encountering predators that is higher on these plants, i.e. by avoiding 'enemy-dense-space'.


Assuntos
Aedes/fisiologia , Comportamento Animal/efeitos dos fármacos , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Phaseolus/química , Pele/química , Acetatos/química , Acetatos/farmacologia , Envelhecimento , Animais , Ciclopentanos/química , Feminino , Humanos , Isomerismo , Estágios do Ciclo de Vida , Odorantes/análise , Oxilipinas/química , Phaseolus/metabolismo , Pele/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
5.
J Anim Ecol ; 90(7): 1635-1646, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724445

RESUMO

Dynamic conditions in nature have led to the evolution of behavioural traits that allow animals to use information on local circumstances and adjust their behaviour accordingly, for example through learning. Although learning can improve foraging efficiency, the learned information can become unreliable as the environment continues to change. This could lead to potential fitness costs when memories holding such unreliable information persist. Indeed, persistent unreliable memory was found to reduce the foraging efficiency of the parasitoid Cotesia glomerata under laboratory conditions. Here, we evaluated the effect of such persistent unreliable memory on the foraging behaviour of C. glomerata in the field. This is a critical step in studies of foraging theory, since animal behaviour evolved under the complex conditions present in nature. Existing methods provide little detail on how parasitoids interact with their environment in the field, therefore we developed a novel multi-camera system that allowed us to trace parasitoid foraging behaviour in detail. With this multi-camera system, we studied how persistent unreliable memory affected the foraging behaviour of C. glomerata when these memories led parasitoids to plants infested with non-host caterpillars in a semi-field set-up. Our results demonstrate that persistent unreliable memory can lead to maladaptive foraging behaviour in C. glomerata under field conditions and increased the likelihood of oviposition in the non-host caterpillar Mamestra brassica. Furthermore, these time- and egg-related costs can be context dependent, since they rely on the plant species used. These results provide us with new insight on how animals use previously obtained information in naturally complex and dynamic foraging situations and confirm that costs and benefits of learning depend on the environment animals forage in. Although behavioural studies of small animals in natural habitats remain challenging, novel methods such as our multi-camera system contribute to understanding the nuances of animal foraging behaviour.


Assuntos
Mariposas , Vespas , Animais , Feminino , Interações Hospedeiro-Parasita , Larva , Oviposição
6.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
7.
Insects ; 11(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353938

RESUMO

Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak (Thaumetopoea processionea) and pine (T. pityocampa) processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken 'nests' that they use to congregate when not feeding. During outbreaks, processionary caterpillars are capable of stripping foliage from their food plants (oak and pine trees), generating considerable economic damage. Moreover, the third to last instar caterpillars of both species produce copious hairs as a means of defence against natural enemies, including both vertebrate and invertebrate predators, and parasitoids. These hairs contain the toxin thaumetopoein that causes strong allergic reactions when it comes into contact with human skin or other membranes. In response to a warming climate, PPM is expanding its range northwards, while OPM outbreaks are increasing in frequency and intensity, particularly in northern Germany, the Netherlands, and southern U.K., where it was either absent or rare previously. Here, we discuss how warming and escape from co-evolved natural enemies has benefitted both species, and suggest possible strategies for biological control.

8.
Sci Rep ; 9(1): 5107, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911048

RESUMO

Most malaria-endemic countries are heavily reliant upon rapid diagnostic tests (RDT) for malaria case identification and treatment. RDT previously used for malaria diagnosis can subsequently be used for molecular assays, including qualitative assessment of parasite species present or the carriage of resistance markers, because parasite DNA can be extracted from the blood inside the RDT which remains preserved on the internal components. However, the quantification of parasite density has not previously been possible from used RDT. In this study, blood samples were collected from school-age children in Western Kenya, in the form of both dried blood spots on Whatman filter paper, and the blood spot that is dropped into rapid diagnostic tests during use. Having first validated a robotic DNA extraction method, the parasite density was determined from both types of sample by duplex qPCR, and across a range of densities. The methods showed good agreement. The preservation of both parasite and human DNA on the nitrocellulose membrane inside the RDT was stable even after more than one year's storage. This presents a useful opportunity for researchers or clinicians wishing to gain greater information about the parasite populations that are being studied, without significant investment of resources.


Assuntos
Testes Diagnósticos de Rotina/métodos , Malária Falciparum/parasitologia , Plasmodium/patogenicidade , DNA de Protozoário/genética , Feminino , Humanos , Quênia , Masculino , Reação em Cadeia da Polimerase
9.
Malar J ; 18(1): 28, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691446

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) is the recommended treatment against uncomplicated Plasmodium falciparum infections, and ACT is widely used. It has been shown that gametocytes may be present after ACT and transmission to mosquitoes is still possible. Artemether-lumefantrine (AL) is a broadly used artemisinin-based combination medicine. Here, it is tested whether AL influences behaviour and fitness of Anopheles mosquitoes, which are the main vectors of P. falciparum. RESULTS: Dual-choice olfactometer and screenhouse experiments showed that skin odour of healthy human individuals obtained before, during and after AL-administration was equally attractive to Anopheles coluzzii and Anopheles gambiae sensu stricto, apart from a small (but significant) increase in mosquito response to skin odour collected 3 weeks after AL-administration. Anopheles coluzzii females fed on parasite-free blood supplemented with AL or on control-blood had similar survival, time until oviposition and number of eggs produced. CONCLUSIONS: Based on the results, AL does not appear to influence malaria transmission through modification of vector mosquito olfactory behaviour or fitness. Extending these studies to Plasmodium-infected individuals and malaria mosquitoes with parasites are needed to further support this conclusion.


Assuntos
Anopheles/efeitos dos fármacos , Combinação Arteméter e Lumefantrina/metabolismo , Aptidão Genética/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Percepção Olfatória/efeitos dos fármacos , Olfato/efeitos dos fármacos , Animais , Anopheles/fisiologia , Feminino , Humanos , Mosquitos Vetores/fisiologia , Odorantes , Olfatometria , Pele/química , Especificidade da Espécie
10.
Sci Rep ; 8(1): 14424, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258118

RESUMO

Herbivory affects subsequent herbivores, mainly regulated by the phytohormones jasmonic (JA) and salicylic acid (SA). Additionally, organisms such as soil microbes belowground or parasitoids that develop inside their herbivorous hosts aboveground, can change plant responses to herbivory. However, it is not yet well known how organisms of trophic levels other than herbivores, below- and above-ground, alter the interactions between insect species sharing a host plant. Here, we investigated whether the parasitoid Aphidius colemani and different soil microbial communities (created through plant-soil feedbacks) affect the JA and SA signalling pathways in response to the aphid Myzus persicae and the thrips Frankliniella occidentalis, as well as subsequent thrips performance. Our results show that the expression of the JA-responsive gene CaPINII in sweet pepper was more suppressed by aphids than by parasitised aphids. However, parasitism did not affect the expression of CaPAL1, a biosynthetic gene of SA. Furthermore, aphid feeding enhanced thrips performance compared with uninfested plants, but this was not observed when aphids were parasitised. Soils where different plant species were previously grown, did not affect plant responses or the interaction between herbivores. Our study shows that members of the third trophic level can modify herbivore interactions by altering plant physiology.


Assuntos
Afídeos/fisiologia , Capsicum/fisiologia , Ciclopentanos/metabolismo , Herbivoria , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Tisanópteros/fisiologia , Animais , Capsicum/genética , Capsicum/parasitologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Parasita , Plantas/parasitologia , Transdução de Sinais , Microbiologia do Solo
11.
Proc Natl Acad Sci U S A ; 115(18): E4209-E4218, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666273

RESUMO

Malaria parasites (Plasmodium) can change the attractiveness of their vertebrate hosts to Anopheles vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally Plasmodium-infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate Plasmodium-induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs. parasite-free individuals. We found the aldehydes heptanal, octanal, and nonanal to be produced in greater amounts by infected individuals and detected by mosquito antennae. In behavioral experiments, we demonstrated that these, and other, Plasmodium-induced aldehydes enhanced the attractiveness of a synthetic odor blend mimicking "healthy" human odor. Heptanal alone increased the attractiveness of "parasite-free" natural human odor. Should the increased production of these aldehydes by Plasmodium-infected humans lead to increased mosquito biting in a natural setting, this would likely affect the transmission of malaria.


Assuntos
Anopheles/fisiologia , Malária , Mosquitos Vetores/fisiologia , Odorantes , Plasmodium/metabolismo , Animais , Criança , Pré-Escolar , Feminino , Humanos , Malária/metabolismo , Malária/transmissão , Masculino
12.
Trends Parasitol ; 33(12): 961-973, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28942108

RESUMO

Evidence is accumulating that Plasmodium-infected vertebrates are more attractive to mosquitoes than noninfected hosts, particularly when high levels of gametocytes are present. Changes in host odour have been suggested as a likely target for parasite manipulation because olfactory cues are crucial to mosquitoes in search of a bloodmeal host. This review discusses two routes that may lead to such changes: (i) direct emission of volatile products from malaria parasites, and (ii) changes in skin microbial composition that could lead to changes in the vertebrate odour profile. Here we synthesize what is known and suggest how further research can increase our understanding of the mechanisms of parasite manipulation of host attractiveness.


Assuntos
Anopheles/fisiologia , Comportamento Alimentar/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Mosquitos Vetores/fisiologia , Plasmodium/fisiologia , Animais , Humanos , Pele/microbiologia , Pele/parasitologia , Compostos Orgânicos Voláteis/metabolismo
13.
J Infect Dis ; 216(3): 291-295, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859429

RESUMO

It has been suggested that Plasmodia manipulate their vertebrate hosts to enhance parasite transmission. Using a dual-choice olfactometer, we investigated the attraction of Anopheles gambiae to 50 Kenyan children (aged 5-12 years) who were naturally infected with Plasmodium falciparum or noninfected controls. Microscopic gametocyte carriers attracted almost 2 times more mosquitoes than children who were parasite free, harbored asexual stages, or had gametocytes at submicroscopic densities. By using highly sensitive stage-specific molecular methods to detect P. falciparum, we show that gametocytes-and not their noninfectious asexual progenitors-induce increased attractiveness of humans to mosquitoes. Our findings therefore support the parasite host manipulation hypothesis.


Assuntos
Anopheles/fisiologia , Comportamento Alimentar , Insetos Vetores/fisiologia , Malária Falciparum/transmissão , Plasmodium falciparum , Animais , Anopheles/parasitologia , Criança , Pré-Escolar , Feminino , Interações Hospedeiro-Parasita , Humanos , Insetos Vetores/parasitologia , Quênia , Malária Falciparum/parasitologia , Masculino , Percepção Olfatória
14.
Sci Rep ; 7(1): 9283, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839251

RESUMO

Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection. We compared the chemical composition and attractiveness to Anopheles coluzzii mosquitoes of skin odours from participants that were infected by Controlled Human Malaria Infection with Plasmodium falciparum. Skin odour composition differed between parasitologically negative and positive samples, with positive samples collected on average two days after parasites emerged from the liver into the blood, being associated with low densities of asexual parasites and the absence of gametocytes. We found a significant reduction in mosquito attraction to skin odour during infection for one experiment, but not in a second experiment, possibly due to differences in parasite strain. However, it does raise the possibility that infection can affect mosquito behaviour. Indeed, several volatile compounds were identified that can influence mosquito behaviour, including 2- and 3-methylbutanal, 3-hydroxy-2-butanone, and 6-methyl-5-hepten-2-one. To better understand the impact of our findings on Plasmodium transmission, controlled studies are needed in participants with gametocytes and higher parasite densities.


Assuntos
Culicidae , Interações Hospedeiro-Parasita , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Odorantes , Plasmodium falciparum , Animais , Comportamento Animal , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Malária Falciparum/transmissão , Metabolômica/métodos , Pele/metabolismo , Compostos Orgânicos Voláteis
15.
BMC Evol Biol ; 15: 98, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26025754

RESUMO

BACKGROUND: Sex determination mechanisms are known to be evolutionarily labile but the factors driving transitions in sex determination mechanisms are poorly understood. All insects of the Hymenoptera are haplodiploid, with males normally developing from unfertilized haploid eggs. Under complementary sex determination (CSD), diploid males can be produced from fertilized eggs that are homozygous at the sex locus. Diploid males have near-zero fitness and thus represent a genetic load, which is especially severe under inbreeding. Here, we study mating structure and sex determination in the parasitoid Cotesia vestalis to investigate what may have driven the evolution of two complementary sex determination loci in this species. RESULTS: We genotyped Cotesia vestalis females collected from eight fields in four townships in Western Taiwan. 98 SNP markers were developed by aligning Illumina sequence reads of pooled DNA of eight different females against a de novo assembled genome of C. vestalis. This proved to be an efficient method for this non-model species and provides a resource for future use in related species. We found significant genetic differentiation within the sampled population but variation could not be attributed to sampling locations by AMOVA. Non-random mating was detected, with 8.1% of matings between siblings. Diploid males, detected by flow cytometry, were produced at a rate of 1.4% among diploids. CONCLUSIONS: We think that the low rate of diploid male production is best explained by a CSD system with two independent sex loci, supporting laboratory findings on the same species. Fitness costs of diploid males in C. vestalis are high because diploid males can mate with females and produce infertile triploid offspring. This severe fitness cost of diploid males combined with non-random mating may have resulted in evolution from single locus CSD to CSD with two independent loci.


Assuntos
Himenópteros/genética , Processos de Determinação Sexual , Animais , Evolução Biológica , Diploide , Feminino , Genótipo , Haploidia , Himenópteros/classificação , Himenópteros/fisiologia , Masculino , Polimorfismo de Nucleotídeo Único , Reprodução , Taiwan
16.
Front Zool ; 10(1): 43, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23895372

RESUMO

INTRODUCTION: Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps. CSD may thus favour disassortative mating and in this, resembles the MHC of the vertebrate immune system, or the self-incompatibility (SI) system of higher plants. RESULTS: Here we show that in the monogamous parasitic wasp Bracon brevicornis (Wesmael), females are able to reject partners with incompatible alleles. Forcing females to accept initially rejected partners resulted in sex ratio distortion and partial infertility of offspring. CONCLUSIONS: CSD-disassortative mating occurred independent of kin recognition and inbreeding avoidance in our experiment. The fitness consequences of mate choice are directly observable, not influenced by environmental effects, and more severe than in comparable systems (SI or MHC), on individuals as well as at the population level. Our results thus demonstrate the strong potential of female mate choice for maintaining high offspring fitness in this species.

17.
PLoS One ; 8(4): e60459, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637750

RESUMO

An attractive way to improve our understanding of sex determination evolution is to study the underlying mechanisms in closely related species and in a phylogenetic perspective. Hymenopterans are well suited owing to the diverse sex determination mechanisms, including different types of Complementary Sex Determination (CSD) and maternal control sex determination. We investigated different types of CSD in four species within the braconid wasp genus Asobara that exhibit diverse life-history traits. Nine to thirteen generations of inbreeding were monitored for diploid male production, brood size, offspring sex ratio, and pupal mortality as indicators for CSD. In addition, simulation models were developed to compare these observations to predicted patterns for multilocus CSD with up to ten loci. The inbreeding regime did not result in diploid male production, decreased brood sizes, substantially increased offspring sex ratios nor in increased pupal mortality. The simulations further allowed us to reject CSD with up to ten loci, which is a strong refutation of the multilocus CSD model. We discuss how the absence of CSD can be reconciled with the variation in life-history traits among Asobara species, and the ramifications for the phylogenetic distribution of sex determination mechanisms in the Hymenoptera.


Assuntos
Himenópteros/genética , Processos de Determinação Sexual , Animais , Diploide , Feminino , Masculino , Modelos Genéticos , Razão de Masculinidade
18.
Genetics ; 180(3): 1525-35, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791258

RESUMO

Despite its fundamental role in development, sex determination is highly diverse among animals. Approximately 20% of all animals are haplodiploid, with haploid males and diploid females. Haplodiploid species exhibit diverse but poorly understood mechanisms of sex determination. Some hymenopteran insect species exhibit single-locus complementary sex determination (sl-CSD), where heterozygosity at a polymorphic sex locus initiates female development. Diploid males are homozygous at the sex locus and represent a genetic load because they are inviable or sterile. Inbreeding depression associated with CSD is therefore expected to select for other modes of sex determination resulting in fewer or no diploid males. Here, we investigate an alternative, heretofore hypothetical, mode of sex determination: multiple-locus CSD (ml-CSD). Under ml-CSD, diploid males are predicted to develop only from zygotes that are homozygous at all sex loci. We show that inbreeding for eight generations in the parasitoid wasp Cotesia vestalis leads to increasing proportions of diploid males, a pattern that is consistent with ml-CSD but not sl-CSD. The proportion of diploid males (0.27 +/- 0.036) produced in the first generation of inbreeding (mother-son cross) suggests that two loci are likely involved. We also modeled diploid male production under CSD with three linked loci. Our data visually resemble CSD with linked loci because diploid male production in the second generation was lower than that in the first. To our knowledge, our data provide the first experimental support for ml-CSD.


Assuntos
Ligação Genética , Processos de Determinação Sexual , Vespas/genética , Animais , Cruzamentos Genéticos , Diploide , Feminino , Fertilidade/genética , Citometria de Fluxo , Endogamia , Masculino , Razão de Masculinidade
19.
J Chem Ecol ; 34(3): 281-90, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18185960

RESUMO

It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species.


Assuntos
Cucumis sativus/parasitologia , Interações Hospedeiro-Parasita , Phaseolus/parasitologia , Feromônios/análise , Comportamento Predatório , Spodoptera/fisiologia , Tetranychidae/fisiologia , Animais , Cucumis sativus/química , Feminino , Larva/fisiologia , Odorantes , Phaseolus/química , Volatilização
20.
Annu Rev Entomol ; 53: 209-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17803453

RESUMO

The dominant and ancestral mode of sex determination in the Hymenoptera is arrhenotokous parthenogenesis, in which diploid females develop from fertilized eggs and haploid males develop from unfertilized eggs. We discuss recent progress in the understanding of the genetic and cytoplasmic mechanisms that make arrhenotoky possible. The best-understood mode of sex determination in the Hymenoptera is complementary sex determination (CSD), in which diploid males are produced under conditions of inbreeding. The gene mediating CSD has recently been cloned in the honey bee and has been named the complementary sex determiner. However, CSD is only known from 4 of 21 hymenopteran superfamilies, with some taxa showing clear evidence of the absence of CSD. Sex determination in the model hymenopteran Nasonia vitripennis does not involve CSD, but it is consistent with a form of genomic imprinting in which activation of the female developmental pathway requires paternally derived genes. Some other hymenopterans are not arrhenotokous but instead exhibit thelytoky or paternal genome elimination.


Assuntos
Himenópteros/fisiologia , Processos de Determinação Sexual , Animais , Evolução Biológica , Feminino , Impressão Genômica/genética , Himenópteros/genética , Masculino , Partenogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...