Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 4): 150701, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634353

RESUMO

Since our comprehensive investigation of finished drinking water in Germany obtained from managed aquifer recharge systems in the period 2015-2016, which revealed widespread contamination with 1,4-dioxane, mitigation measures (integration of AOP units, shutdown or alteration of production processes) have been implemented at some sites. In this study, we conducted follow-up tests on surface water concentrations and associated finished drinking water concentrations in 2017/2018, to evaluate the effectiveness of these measures. Our findings demonstrate that the emission mitigation measures had considerably reducing effects on the average 1,4-dioxane drinking water concentrations for some of the previously severely affected areas (Lower Franconia: -54%, Passau: -88%). Conversely, at notoriously contaminated sites where neither monitoring nor mitigation measures were introduced, the drinking water concentrations stagnated or even increased. Drinking water concentrations determined via a modified US EPA method 522 ranged from below LOQ (0.034 µg/L) up to 1.68 µg/L in all drinking water samples investigated. In river water samples, the maximum concentration exceeded 10 µg/L. Effluents of wastewater treatments plants containing 1,4-dioxane (5 µg/L-1.75 mg/L) were also analyzed for other similar cyclic ethers by suspected target screening. Thus, 1,3-dioxolane and three other derivatives were tentatively identified in effluents from the polyester processing or manufacturing industry. 1,3-Dioxolane was present in concentrations >1.2 mg/L at one site, exceeding up to sevenfold the 1,4-dioxane concentration found there. At another site 2-methyl-1,3-dioxolane was still found 13 km downstream of the discharge point, indicating that ethers analogous to 1,4-dioxane should be further considered regarding their occurrence and fate in wastewater treatment and the aquatic environment.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Dioxanos/análise , Alemanha , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 711: 134783, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818603

RESUMO

1,4-Dioxane, a cyclic ether that has been classified as a class 2B carcinogen by the US-EPA, is a substance of growing environmental concern because of its abundant occurrence in surface waters worldwide. Its high polarity and low biodegradability hamper its retardation in aquifer systems. Previous investigations in Germany have shown that 1,4-dioxane is already widely distributed in rivers and can be found in groundwater at contamination sites. Therefore, the present study shall provide an overview of the Germany-wide distribution of 1,4-dioxane in finished drinking water (FDW) obtained by managed aquifer recharge (MAR) systems. Thus, we investigated the 1,4-Dioxane levels in FDW obtained by MAR, such as river bank filtration (RBF) or artificial groundwater recharge (AGR), in regions that are supplied by surface water bodies (mainly rivers) with already known 1,4-dioxane contaminations. In total, 125 FDW samples and 33 samples of corresponding surface waters were analyzed for 1,4-dioxane content using solid phase extraction followed by gas chromatography-mass spectrometry (SIM-mode) using a slight modification to US-EPA method 522. About 80% of the investigated FDW samples contained 1,4-dioxane at levels exceeding the limit of quantification (0.034 µg/L); the maximum value was 2.05 µg/L. However, a maximum concentration of 3 µg/L was obtained in the surface water samples. Three main factors were associated with elevated levels of 1,4-dioxane in the FDW: A significant 1,4-dioxane contamination of the associated surface water, the application of RBF instead of AGR, and the proportion of available unpolluted groundwater and/or reservoir water blended in the individual waterworks. The results show that 1,4-dioxane should be critically monitored during FDW production by means of MAR not only in Germany. The findings are also of relevance to neighboring countries depending on the same river systems and for research in the field of small mobile substances in drinking water production in general.


Assuntos
Água Potável/química , Dioxanos , Alemanha , Água Subterrânea , Poluentes Químicos da Água
3.
J Am Chem Soc ; 141(7): 3116-3120, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30673222

RESUMO

A recently discovered photodecarboxylase from Chlorella variabilis NC64A ( CvFAP) bears the promise for the efficient and selective synthesis of hydrocarbons from carboxylic acids. CvFAP, however, exhibits a clear preference for long-chain fatty acids thereby limiting its broad applicability. In this contribution, we demonstrate that the decoy molecule approach enables conversion of a broad range of carboxylic acids by filling up the vacant substrate access channel of the photodecarboxylase. These results not only demonstrate a practical application of a unique, photoactivated enzyme but also pave the way to selective production of short-chain alkanes from waste carboxylic acids under mild reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...