Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(23): 3285-3293, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472092

RESUMO

The gas-liquid interface of water is environmentally relevant due to the abundance of aqueous aerosol particles in the atmosphere. Aqueous aerosols often contain a significant fraction of organics. As aerosol particles are small, surface effects are substantial but not yet well understood. One starting point for studying the surface of aerosols is to investigate the surface of aqueous solutions. We review here studies of the surface composition of aqueous solutions using liquid-jet photoelectron spectroscopy in combination with theoretical simulations. Our focus is on model systems containing two functional groups, the carboxylic group and the amine group, which are both common in atmospheric organics. For alkanoic carboxylic acids and alkyl amines, we find that the surface propensity of such amphiphiles can be considered to be a balance between the hydrophilic interactions of the functional group and the hydrophobic interactions of the alkyl chain. For the same chain length, the neutral alkyl amine has a lower surface propensity than the neutral alkanoic carboxylic acid, whereas the surface propensity of the corresponding alkyl ammonium ion is higher than that of the alkanoic carboxylate ion. This different propensity leads to a pH-dependent surface composition which differs from the bulk, with the neutral forms having a much higher surface propensity than the charged ones. In aerosols, alkanoic carboxylic acids and alkyl amines are often found together. For such mixed systems, we find that the oppositely charged molecular ions form ion pairs at the surface. This cooperative behavior leads to a more organic-rich and hydrophobic surface than would be expected in a wide, environmentally relevant pH range. Amino acids contain a carboxylic and an amine group, and amino acids of biological origin are found in aerosols. Depending on the side group, we observe surface propensity ranging from surface-depleted to enriched by a factor of 10. Cysteine contains one more titratable group, which makes it exhibit more complex behavior, with some protonation states found only at the surface and not in the bulk. Moreover, the presence of molecular ions at the surface is seen to affect the distribution of inorganic ions. As the charge of the molecular ions changes with protonation, the effects on the inorganic ions also exhibit a pH dependence. Our results show that for these systems the surface composition differs from the bulk and changes with pH and that the results obtained for single-component solutions may be modified by ion-ion interactions in the case of mixed solutions.


Assuntos
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Aminas/química , Aminoácidos , Água/química , Aerossóis , Íons
2.
Phys Chem Chem Phys ; 24(42): 26037-26045, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36268753

RESUMO

Ethanol and water form an azeotropic mixture at an ethanol molecular percentage of ∼91% (∼96% by volume), which prohibits ethanol from being further purified via distillation. Aqueous solutions at different concentrations in ethanol have been studied both experimentally and theoretically. We performed cylindrical micro-jet photoelectron spectroscopy, excited by synchrotron radiation, 70 eV above C1s ionization threshold, providing optimal atomic-scale surface-probing. Large model systems have been employed to simulate, by molecular dynamics, slabs of the aqueous solutions and obtain an atomistic description of both bulk and surface regions. We show how the azeotropic behaviour results from an unexpected concentration-dependence of the surface composition. While ethanol strongly dominates the surface and water is almost completely depleted from the surface for most mixing ratios, the different intermolecular bonding patterns of the two components cause water to penetrate to the surface region at high ethanol concentrations. The addition of surface water increases its relative vapour pressure, giving rise to the azeotropic behaviour.

3.
Acc Chem Res ; 55(21): 3080-3087, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251058

RESUMO

By combining results and analysis from cylindrical microjet photoelectron spectroscopy (cMJ-PES) and theoretical simulations, we unravel the microscopic properties of ethanol-water solutions with respect to structure and intermolecular bonding patterns following the full concentration scale from 0 to 100% ethanol content. In particular, we highlight the salient differences between bulk and surface. Like for the pure water and alcohol constituents, alcohol-water mixtures have attracted much interest in applications of X-ray spectroscopies owing to their potential of combining electronic and geometric structure probing. The water mixtures of the two simplest alcohols, methanol and ethanol, have generated particular attention due to their delicate hydrogen bonding networks that underlie their structural and thermodynamic properties. Macroscopically ethanol-water seems to mix very well, however microscopically this is not true. The aberrant thermodynamics of water-alcohol mixtures have been suggested to be caused by energy differences of hydrogen bonding between water-water, alcohol-alcohol and alcohol-water molecules. These networks may perturb the local character of the interaction between X-rays and matter, calling for analysis that go beyond the normally applied local selection and building block rules and that can combine the effects of light-matter, intra- and intermolecular interactions. However, despite decades of ongoing research there are still controversies of the precise nature of hydrogen bonding networks that underlie the mixing of these simple molecules. Our combined analysis indicates that at low concentration ethanol molecules form a film at the surface since ethanol at the surface can expose its hydrophobic part to the vacuum retaining its two (or three) possible hydrogen bonds, while water at the surface cannot retain all its four possible hydrogen bonds. Thus, ethanol at the surface becomes energetically favorable. Ethanol molecules show a tilting angle variation of the C-C axis with respect to the surface normal as large as 60° at very low concentration. In bulk, around ca. ten %, the ethanol oxygen atoms tend to make a third acceptor hydrogen bond to water molecules. At ca. 20 %, there is a U-shaped change in the CH3 to CH2OH binding energy (BE) shift indicating the presence of ring-like agglomerates called clathrate structures. At the surface, between 5 and 25%, ethanol forms a closely packed layer with the smallest C-C tilting angle variation down to ∼20°. Above 25% and below the azeotrope at the surface, ethanol shows an increase in the tilting angle variation, while at very high ethanol concentrations water tends to move to the surface so giving a microscopic explanation of the azeotrope effect. This migration is connected to the presence of longer (shorter) ethanol chains in the bulk (surface). A brief comparison with discussions and predictions from other spectroscopic techniques is also given. We emphasize the execution of an integrated approach that combines molecular structural dynamics with quantum predictions of the core electronic chemical shift, so establishing a protocol with considerable interpretative as well as predictive power for cMJ-PES measurements. We believe that this protocol can valorize cMJ-PES for studies of properties of other alcohol mixtures as well as of binary solutions in general.


Assuntos
Etanol , Água , Espectroscopia Fotoeletrônica , Etanol/química , Ligação de Hidrogênio , Água/química , Termodinâmica
4.
Phys Chem Chem Phys ; 24(11): 7164, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35260872

RESUMO

Correction for 'The molecular structure of the surface of water-ethanol mixtures' by Johannes Kirschner et al., Phys. Chem. Chem. Phys., 2021, 23, 11568-11578, DOI: 10.1039/D0CP06387H.

5.
J Phys Chem Lett ; 10(24): 7636-7643, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747290

RESUMO

Recent advances in operando-synchrotron-based X-ray techniques are making it possible to address fundamental questions related to complex proton-coupled electron transfer reactions, for instance, the electrocatalytic water splitting process. However, it is still a grand challenge to assess the ability of the different techniques to characterize the relevant intermediates, with minimal interference on the reaction mechanism. To this end, we have developed a novel methodology employing X-ray photoelectron spectroscopy (XPS) in connection with the liquid-jet approach to probe the electrochemical properties of a model electrocatalyst, [RuII(bpy)2(py)(OH2)]2+, in an aqueous environment. There is a unique fingerprint of the extremely important higher-valence ruthenium-oxo species in the XPS spectra along the oxidation reaction pathway. Furthermore, a sequential method combining quantum mechanics and molecular mechanics is used to illuminate the underlying physical chemistry of such systems. This study provides the basis for the future development of in-operando XPS techniques for water oxidation reactions.

6.
J Phys Chem B ; 121(33): 7916-7923, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28715892

RESUMO

Because of the amphiphilic properties of alcohols, hydrophobic hydration is important in the alcohol-water system. In the present paper we employ X-ray photoelectron spectroscopy (XPS) to investigate the bulk and surface molecular structure of ethanol-water mixtures from 0.2 to 95 mol %. The observed XPS binding energy splitting between the methyl C 1s and hydroxymethyl C 1s groups (BES_[CH3-CH2OH]) as a function of the ethanol molar percentage can be divided into different regions: one below 35 mol % with higher values (about 1.53 eV) and one starting at 60 mol % up to 95 mol % with 1.49 eV as an average value. The chemical shifts agree with previous quantum mechanics/molecular mechanics (QM/MM) calculations [ Löytynoja , T. ; J. Phys. Chem. B 2014 , 118 , 13217 ]. According to these calculations, the BES_[CH3-CH2OH] is related to the number of hydrogen bonds between the ethanol and the surrounding molecules. As the ethanol concentration increases, the average number of hydrogen bonds decreases from 2.5 for water-rich mixtures to 2 for pure ethanol. We give an interpretation for this behavior based on how the hydrogen bonds are distributed according to the mixing ratio. Since our experimental data are surface sensitive, we propose that this effect may also be manifested at the interface. From the ratio between the XPS C 1s core lines intensities we infer that below 20 mol % the ethanol molecules have their hydroxyl groups more hydrated and possibly facing the solution's bulk. Between 0.1 and 14 mol %, we show the formation of an ethanol monolayer at approximately 2 mol %. Several parameters are derived for the surface region at monolayer coverage.

7.
J Phys Chem B ; 121(16): 4220-4225, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28358197

RESUMO

Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.

8.
J Phys Chem Lett ; 6(5): 807-11, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26262656

RESUMO

The extent to which functional groups are protonated at aqueous interfaces as compared to bulk is deemed essential to several areas in chemistry and biology. The origin of such changes has been the source of intense debate. We use X-ray photoelectron spectroscopy and all-atom reactive molecular dynamics simulations as two independent methods to probe, at the molecular scale, both bulk and surface distributions of protonated species of cysteine in an aqueous solution. We show that the distribution of the cysteine species at the surface is quite different from that in the bulk. We argue that this finding, however, cannot be simply related to a change in the extent of proton sharing between the two conjugate acid/base pairs that may occur between these two regions. The present theoretical simulations identify species at the surface that are not present in the bulk.


Assuntos
Simulação de Dinâmica Molecular/estatística & dados numéricos , Espectroscopia Fotoeletrônica/métodos , Prótons
9.
J Chem Phys ; 128(4): 044317, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18247959

RESUMO

Photofragmentation of argon clusters of average size ranging from 10 up to 1000 atoms is studied using soft x-ray radiation below the 2p threshold and multicoincidence mass spectroscopy technique. For small clusters (=10), ionization induces fast fragmentation with neutral emission imparting a large amount of energy. While the primary dissociation takes place on a picosecond time scale, the fragments undergo slow degradation in the spectrometer on a microsecond time scale. For larger clusters ( >or=100) we believe that we observe the fragmentation pattern of multiply charged species on a time-scale which lasts a few hundred nanoseconds. The reason for these slower processes is the large number of neutral atoms which act as an efficient cooling bath where the excess energy ("heat") dissipates among all degrees of freedom. Further degradation of the photoionic cluster in spectrometer then takes place on the microsecond time scale, similar to small clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...