Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1579, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383676

RESUMO

Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress.


Assuntos
Coesinas , Neoplasias , Humanos , Cromatina , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , DNA
2.
Mol Cell ; 83(22): 4032-4046.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977116

RESUMO

Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle arrests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sensitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell-cycle exit.


Assuntos
Senescência Celular , Dano ao DNA , Ciclo Celular/genética , Divisão Celular , Senescência Celular/genética , Homeostase , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Mol Cell ; 83(22): 4078-4092.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977119

RESUMO

Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.


Assuntos
Quinases Ciclina-Dependentes , Neoplasias , Humanos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina , Transdução de Sinais , Ciclo Celular , Inibidores Enzimáticos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linhagem Celular Tumoral
4.
Metallomics ; 14(7)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35689667

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.


Assuntos
Replicação do DNA , Nucleosídeos , Neoplasias Pancreáticas , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Metalocenos , Nucleosídeos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fase S , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
5.
Viruses ; 14(2)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216024

RESUMO

Modulation of the host cell cycle is a common strategy used by viruses to create a pro-replicative environment. To facilitate viral genome replication, vaccinia virus (VACV) has been reported to alter cell cycle regulation and trigger the host cell DNA damage response. However, the cellular factors and viral effectors that mediate these changes remain unknown. Here, we set out to investigate the effect of VACV infection on cell proliferation and host cell cycle progression. Using a subset of VACV mutants, we characterise the stage of infection required for inhibition of cell proliferation and define the viral effectors required to dysregulate the host cell cycle. Consistent with previous studies, we show that VACV inhibits and subsequently shifts the host cell cycle. We demonstrate that these two phenomena are independent of one another, with viral early genes being responsible for cell cycle inhibition, and post-replicative viral gene(s) responsible for the cell cycle shift. Extending previous findings, we show that the viral kinase F10 is required to activate the DNA damage checkpoint and that the viral B1 kinase and/or B12 pseudokinase mediate degradation of checkpoint effectors p53 and p21 during infection. We conclude that VACV modulates host cell proliferation and host cell cycle progression through temporal expression of multiple VACV effector proteins. (209/200.).


Assuntos
Ciclo Celular/fisiologia , Dano ao DNA , Interações Hospedeiro-Patógeno/genética , Vaccinia virus/genética , Proteínas Virais/genética , Proliferação de Células , Células HCT116 , Células HeLa , Humanos , Mutação , Proteína Supressora de Tumor p53 , Vaccinia virus/fisiologia , Replicação Viral
6.
Nat Rev Mol Cell Biol ; 23(1): 74-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508254

RESUMO

Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.


Assuntos
Pontos de Checagem do Ciclo Celular , Neoplasias/patologia , Animais , Dano ao DNA/genética , Replicação do DNA/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Oncogenes , Fuso Acromático/metabolismo
7.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33947663

RESUMO

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Desaminases APOBEC/genética , Neoplasias da Mama/genética , Carcinoma Ductal/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Instabilidade Cromossômica , Replicação do DNA , Feminino , Humanos , Camundongos
8.
Mol Cell Oncol ; 8(2): 1839294, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33855165

RESUMO

DNA replication capacity, the maximal amount of DNA a cell can synthesize at any given time during S phase, is controlled by E2F-dependent transcription. Controlling replication capacity limits the replication rate and provides a robust mechanism to keep replication fork speed within an optimal range whilst ensuring timely completion of genome duplication.

9.
J Biol Chem ; 296: 100533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33713703

RESUMO

Saccharomyces cerevisiae exhibits gene expression homeostasis, which is defined as the buffering of transcription levels against changes in DNA copy number during the S phase of the cell cycle. It has been suggested that S. cerevisiae employs an active mechanism to maintain gene expression homeostasis through Rtt109-Asf1-dependent acetylation of histone H3 on lysine 56 (H3K56). Here, we show that gene expression homeostasis can be achieved independently of H3K56 acetylation by Tos4 (Target of Swi6-4). Using Nanostring technology, we establish that Tos4-dependent gene expression homeostasis depends on its forkhead-associated (FHA) domain, which is a phosphopeptide recognition domain required to bind histone deacetylases (HDACs). We demonstrate that the mechanism of Tos4-dependent gene expression homeostasis requires its interaction with the Rpd3L HDAC complex. However, this is independent of Rpd3's well-established roles in both histone deacetylation and controlling the DNA replication timing program, as established by deep sequencing of Fluorescence-Activated Cell Sorted (FACS) S and G2 phase populations. Overall, our data reveals that Tos4 mediates gene expression homeostasis through its FHA domain-dependent interaction with the Rpd3L complex, which is independent of H3K56ac.


Assuntos
Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Homeostase , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Histona Acetiltransferases/genética , Histonas/genética , Lisina/genética , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
10.
Science ; 369(6504)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32764038

RESUMO

Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.


Assuntos
Proteínas Arqueais/fisiologia , Divisão Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Sulfolobus acidocaldarius/citologia , Proteínas Arqueais/química , Bortezomib/química , Bortezomib/farmacologia , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Proteólise , Sulfolobus acidocaldarius/efeitos dos fármacos , Sulfolobus acidocaldarius/enzimologia
11.
Nat Commun ; 11(1): 3503, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665547

RESUMO

DNA replication timing is tightly regulated during S-phase. S-phase length is determined by DNA synthesis rate, which depends on the number of active replication forks and their velocity. Here, we show that E2F-dependent transcription, through E2F6, determines the replication capacity of a cell, defined as the maximal amount of DNA a cell can synthesise per unit time during S-phase. Increasing or decreasing E2F-dependent transcription during S-phase increases or decreases replication capacity, and thereby replication rates, thus shortening or lengthening S-phase, respectively. The changes in replication rate occur mainly through changes in fork speed without affecting the number of active forks. An increase in fork speed does not induce replication stress directly, but increases DNA damage over time causing cell cycle arrest. Thus, E2F-dependent transcription determines the DNA replication capacity of a cell, which affects the replication rate, controlling the time it takes to duplicate the genome and complete S-phase.


Assuntos
Cromatina/metabolismo , Replicação do DNA/fisiologia , Western Blotting , Cromatina/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Replicação do DNA/genética , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Fase S/genética , Fase S/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Cancer Discov ; 10(7): 998-1017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32349972

RESUMO

Loss-of-function mutations of EZH2, the enzymatic component of PRC2, have been associated with poor outcome and chemotherapy resistance in T-cell acute lymphoblastic leukemia (T-ALL). Using isogenic T-ALL cells, with and without CRISPR/Cas9-induced EZH2-inactivating mutations, we performed a cell-based synthetic lethal drug screen. EZH2-deficient cells exhibited increased sensitivity to structurally diverse inhibitors of CHK1, an interaction that could be validated genetically. Furthermore, small-molecule inhibition of CHK1 had efficacy in delaying tumor progression in isogenic EZH2-deficient, but not EZH2 wild-type, T-ALL cells in vivo, as well as in a primary cell model of PRC2-mutant ALL. Mechanistically, EZH2 deficiency resulted in a gene-expression signature of immature T-ALL cells, marked transcriptional upregulation of MYCN, increased replication stress, and enhanced dependency on CHK1 for cell survival. Finally, we demonstrate this phenotype is mediated through derepression of a distal PRC2-regulated MYCN enhancer. In conclusion, we highlight a novel and clinically exploitable pathway in high-risk EZH2-mutated T-ALL. SIGNIFICANCE: Loss-of-function mutations of PRC2 genes are associated with chemotherapy resistance in T-ALL, yet no specific therapy for this aggressive subtype is currently clinically available. Our work demonstrates that loss of EZH2 activity leads to MYCN-driven replication stress, resulting in increased sensitivity to CHK1 inhibition, a finding with immediate clinical relevance.This article is highlighted in the In This Issue feature, p. 890.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proliferação de Células , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
13.
Curr Genet ; 64(1): 81-86, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28744706

RESUMO

The G1-to-S cell cycle transition is promoted by the periodic expression of a large set of genes. In Saccharomyces cerevisiae G1/S gene expression is regulated by two transcription factor (TF) complexes, the MBF and SBF, which bind to specific DNA sequences, the MCB and SCB, respectively. Despite extensive research little is known regarding the evolution of the G1/S transcription regulation including the co-evolution of the DNA binding domains with their respective DNA binding sequences. We have recently examined the co-evolution of the G1/S TF specificity through the systematic generation and examination of chimeric Mbp1/Swi4 TFs containing different orthologue DNA binding domains in S. cerevisiae (Hendler et al. in PLoS Genet 13:e1006778. doi: 10.1371/journal.pgen.1006778 , 2017). Here, we review the co-evolution of G1/S transcriptional network and discuss the evolutionary dynamics and specificity of the MBF-MCB and SBF-SCB interactions in different fungal species.


Assuntos
Evolução Biológica , Fase G1/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Fase S/genética , Transcrição Gênica , Leveduras/fisiologia , Evolução Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
PLoS Genet ; 13(5): e1006778, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28505153

RESUMO

Transcriptional regulatory networks play a central role in optimizing cell survival. How DNA binding domains and cis-regulatory DNA binding sequences have co-evolved to allow the expansion of transcriptional networks and how this contributes to cellular fitness remains unclear. Here we experimentally explore how the complex G1/S transcriptional network evolved in the budding yeast Saccharomyces cerevisiae by examining different chimeric transcription factor (TF) complexes. Over 200 G1/S genes are regulated by either one of the two TF complexes, SBF and MBF, which bind to specific DNA binding sequences, SCB and MCB, respectively. The difference in size and complexity of the G1/S transcriptional network across yeast species makes it well suited to investigate how TF paralogs (SBF and MBF) and DNA binding sequences (SCB and MCB) co-evolved after gene duplication to rewire and expand the network of G1/S target genes. Our data suggests that whilst SBF is the likely ancestral regulatory complex, the ancestral DNA binding element is more MCB-like. G1/S network expansion took place by both cis- and trans- co-evolutionary changes in closely related but distinct regulatory sequences. Replacement of the endogenous SBF DNA-binding domain (DBD) with that from more distantly related fungi leads to a contraction of the SBF-regulated G1/S network in budding yeast, which also correlates with increased defects in cell growth, cell size, and proliferation.


Assuntos
Evolução Molecular , Fase G1/genética , Duplicação Gênica , Aptidão Genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sítios de Ligação , Redes Reguladoras de Genes , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
16.
Genes (Basel) ; 8(3)2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257104

RESUMO

During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

17.
Cell Syst ; 3(3): 214-216, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27684184

RESUMO

Styles et al. develop an optimized method that combines high-content microscopy and automated phenotypic analysis with genome-wide yeast genetics to identify genes in DNA damage repair.

18.
Cell Rep ; 15(7): 1412-1422, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27160911

RESUMO

Recent work established DNA replication stress as a crucial driver of genomic instability and a key event at the onset of cancer. Post-translational modifications play an important role in the cellular response to replication stress by regulating the activity of key components to prevent replication-stress-induced DNA damage. Here, we establish a far greater role for transcriptional control in determining the outcome of replication-stress-induced events than previously suspected. Sustained E2F-dependent transcription is both required and sufficient for many crucial checkpoint functions, including fork stalling, stabilization, and resolution. Importantly, we also find that, in the context of oncogene-induced replication stress, where increased E2F activity is thought to cause replication stress, E2F activity is required to limit levels of DNA damage. These data suggest a model in which cells experiencing oncogene-induced replication stress through deregulation of E2F-dependent transcription become addicted to E2F activity to cope with high levels of replication stress.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Fatores de Transcrição E2F/metabolismo , Transcrição Gênica , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Humanos , Oncogenes , Biossíntese de Proteínas/genética
19.
Methods Mol Biol ; 1170: 463-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24906330

RESUMO

G1-S transcriptional control involves the coordination of the expression of a large set of co-regulated genes as a function of cell cycle progression (Bertoli et al., Nat Rev Mol Cell Biol 14:518-528, 2013). Confining transcription to the G1 phase of the cell cycle requires the regulation of specific transcription factor activity through either co-factors or regulation of promoter DNA binding. Therefore, the analysis of G1-S transcriptional control involves cell cycle synchronization and monitoring cell cycle synchrony, in order to establish DNA binding of G1-S transcription factors to G1-S promoters and to investigate changes in gene expression during the different phases of the cell cycle. Here, we describe a cell cycle synchrony method and ways to monitor synchrony. We also describe a chromatin immunoprecipitation (ChIP) method to locate G1-S transcription factor components to promoters and a quantitative PCR (qPCR) protocol to determine gene expression. Defining the binding dynamics of G1-S transcription factors and changes in gene expression during the cell cycle should provide new insights into the mechanism that control G1-S transcription and will allow for investigation of the biological relevance of confining gene expression to G1.


Assuntos
Fase G1 , Fase S , Saccharomycetales/citologia , Ativação Transcricional , Técnicas de Cultura de Células/métodos , Imunoprecipitação da Cromatina/métodos , Citometria de Fluxo/métodos , Regulação Fúngica da Expressão Gênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Saccharomycetales/genética
20.
Curr Biol ; 23(17): 1629-37, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-23954429

RESUMO

BACKGROUND: In eukaryotic cells, detection of replication stress results in the activation of the DNA replication checkpoint, a signaling cascade whose central players are the kinases ATR and Chk1. The checkpoint response prevents the accumulation of DNA damage and ensures cell viability by delaying progression into mitosis. However, the role and mechanism of the replication checkpoint transcriptional response in human cells, which is p53 independent, is largely unknown. RESULTS: We show that, in response to DNA replication stress, the regular E2F-dependent cell-cycle transcriptional program is maintained at high levels, and we establish the mechanisms governing such transcriptional upregulation. E2F6, a repressor of E2F-dependent G1/S transcription, replaces the activating E2Fs at promoters to repress transcription in cells progressing into S phase in unperturbed conditions. After replication stress, the checkpoint kinase Chk1 phosphorylates E2F6, leading to its dissociation from promoters. This promotes E2F-dependent transcription, which mediates cell survival by preventing DNA damage and cell death. CONCLUSIONS: This work reveals, for the first time, that the regular cell-cycle transcriptional program is part of the DNA replication checkpoint response in human cells and establishes the molecular mechanism involved. We show that maintaining high levels of G1/S cell-cycle transcription in response to replication stress contributes to two key functions of the DNA replication checkpoint response, namely, preventing genomic instability and cell death. Given the critical role of replication stress in oncogene transformation, a detailed understanding of the molecular mechanisms involved in the checkpoint response will contribute to a better insight into cancer development.


Assuntos
Ciclo Celular/genética , Replicação do DNA , Fator de Transcrição E2F6/fisiologia , Proteínas Quinases/fisiologia , Transcrição Gênica/fisiologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Humanos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...