Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 11-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38051456

RESUMO

In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration of photosensitizers (PS) under white-light conditions at 90 min (irradiance of 50 mW cm-2 and a total light dosage of 270 J cm-2) showed that the Zn(II) derivative is the most effective PS significantly reduced the concentration of viable mycobacteria. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum(II) compounds and consequently about the presence of metal center ion. This class of PS may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.


Assuntos
Mycobacterium , Porfirinas , Platina/farmacologia , Luz , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Antibacterianos
2.
Microb Pathog ; 184: 106369, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778705

RESUMO

Historically, the piperazine moiety has been demonstrated to possess pharmacophoric properties, and has subsequently been incorporated in many drugs that have antitumor, antimalarial, antiviral, antibacterial and antifungal properties. Derivatives of eugenol and dihydroeugenol have also been reported as being bioactive compounds. This study reports the synthesis of a range of eugenol/dihydroeugenol - piperazine derivatives which have been tested as antimicrobial compounds against Gram positive, Gram negative and rapid-growing mycobacteria (RGM). The rationale employed in the design of the structural pattern of these new derivatives, provides useful insights into the structure-activity relationships (SAR) of the series. Antimicrobial activity tests were extremely encouraging, with the majority of the synthesised compounds being more active than eugenol and dihydroeugenol starting materials. The antimicrobial potential was most notable against the Gram-negative species K. pneumoniae and P. aeruginosa, but there was also significant performance against the Gram-positive strains S. epidermidis and S. aureus and the Rapidly Growing Mycobacteria (RGM) strains tested. Tests using the synthesised compounds against multidrug-resistance clinical (MDR) isolates also showed high activity. The biofilm inhibition tests using M. fortuitum showed that all evaluated derivatives were able to inhibit biofilm formation even at low concentrations. In terms of structural-activity relationships; the results generated by this study demonstrate that the compounds with bulky substituents on the piperazine subunit were much more active than those with less bulky groups, or no groups. Importantly, the derivatives with a sulfonamide side chain were the most potent compounds. A further observation was that those compounds with a para-substituted benzenesulfonamide ring stand out, regardless of whether this substituent is a donor or an electron-withdrawing group.


Assuntos
Anti-Infecciosos , Eugenol , Eugenol/farmacologia , Piperazina/farmacologia , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Micobactérias não Tuberculosas
3.
Photodiagnosis Photodyn Ther ; 38: 102770, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35183782

RESUMO

We report the photoinactivation evaluation of Ag(II) porphyrins (cationic AgTMeP and anionic AgTPPS) in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains. The aPDT assays in the Mycolicibacterium fortuitum, Mycobacteroides abscessus subs. abscessus, Mycobacteroides abscessus subsp. massiliense, and Mycolicibacterium smegmatis strains conducted without aggregating photosensitizers (PS) under irradiation for 90 min (270 J/cm2) showed that the most effective PS (nanomolar range) significantly reduced the concentration of viable mycobacteria. Structural damage on the Mycolicibacterium smegmatis non-pathogenic model was observed using atomic force microscopy, revealing that Ag(II)-porphyrin induced extensive changes in its electrical and adhesive forces, demonstrating changes in topography that may be linked to the action of different fractions of reactive oxygen species. The results presented in this paper provide solid evidence for using cationic porphyrin AgTMeP as an alternative to the conventional treatment of cutaneous mycobacteriosis and the disinfection of prosthetic devices and hospital equipment.


Assuntos
Anti-Infecciosos , Mycobacterium , Fotoquimioterapia , Porfirinas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Cátions/química , Cátions/farmacologia , Micobactérias não Tuberculosas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Prata/farmacologia
4.
Photodiagnosis Photodyn Ther ; 36: 102514, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34481062

RESUMO

Antimicrobial photodynamic therapy (aPDT) has gained prominence in microbiology, especially in treating non-invasive infections. Diseases such as mycobacteriosis, which causes localized infections and has a slow treatment, tend to be future targets for this type of technology. Therefore, this study aimed to explore the action of two isomeric Pd(II)-porphyrins on fast-growing mycobacterial strains (RGM). Tetra-cationic porphyrins (4-PdTPyP and 3-PdTPyP) were synthesized and applied against standard strains of Mycobacteroides abscessus subsp. abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycolicibacterium smegmatis (ATCC 700084), and Mycobacteroides abscessus subsp. massiliense (ATCC 48898). Reactive oxygen species (ROS) scavengers were used in an attempt to determine possible ROS produced by the photosensitizers (PS) under study. Moreover, the impact of porphyrin on the mycobacterial surface was further evaluated by atomic force microscopy (AFM), and we observed significant damage on cells walls and altered nanomechanical and electrostatic adhesion properties. The results presented herein show that the positively charged porphyrin at the meta position (3-PdTPyP) was the most efficient PS against the RGM strains, and its bactericidal activity was proven in two irradiation sessions, with singlet oxygen species being the main ROS involved in this process. This study demonstrated the therapeutic potential of porphyrins, especially the 3-PdTPyP derivative.


Assuntos
Mycobacterium , Fotoquimioterapia , Porfirinas , Paládio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia
5.
Biofouling ; 37(5): 555-571, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225503

RESUMO

Microbial infections caused by sessile microorganisms are known to be a more challenging issue than infections caused by the same microorganisms in the planktonic state. Pseudomonas aeruginosa is an opportunistic pathogen and biofilm-forming agent. This species presents intense cellular communication mediated by signaling molecules. This process is known as quorum sensing (QS) and induces the transcription of specific genes that favors cell density growth and three-dimensional bacterial grouping. In this context, the discovery of compounds capable of inhibiting the action of the QS signaling molecules seems to be a promising strategy against biofilms. This work aimed to evaluate the anti-biofilm action and the in vitro safety profile of a sulfamethoxazole-Ag complex. The results obtained indicate potential anti-biofilm activity through QS inhibition. In silico tests showed that the compound acts on the las and pqs systems, which are the main regulators of biofilm formation in P. aeruginosa. Additionally, the molecule proved to be safe for human peripheral blood mononuclear cells.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Antibacterianos/farmacologia , Biofilmes , Humanos , Leucócitos Mononucleares , Simulação de Acoplamento Molecular , Prata/farmacologia , Sulfonamidas/farmacologia , Fatores de Virulência
6.
Chem Biodivers ; 18(5): e2100066, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33829648

RESUMO

Using molecular hybridization, specific sulfonamide derivatives of eugenol were synthesized with subtle modifications in the allylic chain of the eugenol subunit (and also in the nature of the substituent group in the sulfonamide aromatic ring) which allowed us to study the influence of structural changes on the antimicrobial potential of the hybrids. Antimicrobial test results showed that most of the synthesized hybrid compounds showed good activity with better results than the parent compounds. Molecular docking studies of the hybrids with the essential bacterial enzyme DHPS showed complexes with low binding energies, suggesting that DHPS could be a possible target for the antibacterial sulfonamide-eugenol hybrids. Furthermore, most of the final compounds presented similar docking poses to that of the crystallographic ligand sulfamethoxazole. The results obtained allow us to conclude that these are promising compounds for use as new leads in the search for new antibacterial sulfonamides.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Eugenol/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Sulfonamidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Eugenol/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
7.
J Clin Tuberc Other Mycobact Dis ; 23: 100217, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33869806

RESUMO

Rapidly growing mycobacteria (RGM) are found in non-sterile water and often associated with severe post-surgical infections and affect immunocompromised patients. In addition, RGM can prevent the host's immune response and have the ability to adhere to and form biofilms on biological and synthetic substrates, making pharmacological treatment difficult because conventional antimicrobials are ineffective against biofilms. Thus, there is an urgent need for new antimicrobial compounds that can overcome these problems. In this context, sulfonamides complexed with Au, Cd, Ag, Cu, and Hg have shown excellent activity against various microorganisms. Considering the importance of combating RGM-associated infections, this study aimed to evaluate the activity of sulfonamide metal complexes against RGM biofilm. The sulfonamides were tested individually for their ability to inhibit mycobacterial formation and destroy the preformed biofilm of standard RGM strains, such as Mycobacterium abscessus, M. fortuitum, and M. massiliense. All sulfonamides complexed with metals could reduce, at subinhibitory concentrations, the adhesion and biofilm formation of three RGM species in polystyrene tubes. It is plausible that the anti-biofilm capacity of the compounds is due to the inhibition of c-di-GMP synthesis, which is an important signal for RGM biofilm formation. Hence, the impacts and scientific contribution of this study are based on the discovery of a potential new therapeutic option against RGM-associated biofilm infections. Sulfonamides complexed with metals have proven to be a useful and promising tool to reduce microbial adhesion on inert surfaces, stimulating the improvement of methodologies to insert compounds as new antibacterial and coating agents for medical and hospital materials.

8.
Nat Prod Res ; 35(5): 802-806, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30990070

RESUMO

Colletia paradoxa (Spreng.) Esc. (Rhamnaceae, Colletieae) is a medicinal plant, threatened with extinction in Brazil, presenting great morphological variability. Our objective is to investigate the phytochemical components, antioxidant capacity and antimycobacterial activity of different morphotypes of C. paradoxa in different environments. For this, the crude extract of the leaves and branches of the individuals sampled was used. The elimination capacity of the free radicals was determined by the DPPH method, the antimycobacterial activity by the broth microdilution method and the phenolic content by the spectrophotometric method using the Folin-Ciocalteu reagent and by HPLC. The extracts of C. paradoxa and its morphotypes showed significant amounts of phenolic compounds, including quercetin, quercitrin and rutin, besides considerable antioxidant and antimycobacterial activity No connection was detected between the phytochemical composition and different morphotypes of C. paradoxa.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Mycobacterium/efeitos dos fármacos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Rhamnaceae/química , Antibacterianos/análise , Antioxidantes/química , Brasil , Cromatografia , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Testes de Sensibilidade Microbiana , Folhas de Planta/química
9.
Microb Pathog ; 148: 104455, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32810554

RESUMO

In this manuscript, we report, for the first time, the photoinactivation evaluation of tetra-cationic porphyrins with peripheral Pt (II)-bpy complexes in the photodynamic inactivation (PDI) of rapidly growing mycobacterial strains (RGM). Two different isomeric Pt (II)-porphyrins were synthetized and applied. PDI experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration (without aggregation) of photosensitizers (PS) under white-light illumination for 90 min showed that the most effective PS significantly reduced the concentration of viable mycobacteria. The present results show that positively charged porphyrins at the meta position (3-PtTPyP) are more efficient PS against M. abscessus, M. fortuitum, M. massiliense, and M. smegmatis. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum (II) compounds and consequently their solubility in physiological media. Tetra-cationic PS may be promising anti-mycobacterial PDI agents with potential applications in medical clinical cases and bioremediation.


Assuntos
Mycobacterium , Porfirinas , Cátions , Luz , Fármacos Fotossensibilizantes/farmacologia
10.
Environ Monit Assess ; 192(6): 378, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424709

RESUMO

The exploitation of forest resources, especially non-timber forest products, has effects on different biological levels, from the biochemical level of an organism to the ecosystem level. The present study addresses the effects of different management strategies (protected area, managed area, and an area where the species is cultivated in agroforestry systems) in reproductive phenology, fruit features, and phytochemical profiles of Dimorphandra gardneriana (Leguminosae), a tree species, pioneer, and socioeconomically important plant of the Brazilian Savanna. Its fruits are exploited by extractivist communities to obtain rutin and quercetin, which are internationally traded bioflavonoids (two of the ten most exported phytochemicals in Brazil). The results showed that the effects on these parameters were characterized as positive, increasing according to the level of exploitation. The agroforestry system had higher yields of flavonoids of economic interest, viable fruits and seeds, followed by the management area and the protected area. Finally, knowledge about the planting effects on fava d'anta fruit production can be a great ally for effectively managing forest resources. A varied system of exploitation implies greater and more stable economic returns for extractive communities, favoring the conservation of the species in protected areas.


Assuntos
Ecossistema , Fabaceae , Flavonoides , Brasil , Conservação dos Recursos Naturais , Monitoramento Ambiental , Árvores , Clima Tropical
11.
Bioorg Chem ; 98: 103727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179285

RESUMO

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of ß-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of ß-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
12.
J Tradit Complement Med ; 9(4): 383-392, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453135

RESUMO

The production of reactive species over physiological levels associated to pathogenic bacteria could represent a high risk for many diseases. The Rosmarinus officinalis L. is used around the world due its pharmacological proprieties. So, in this study our aim is to test for the first time if R. officinalis L. extract (eeRo) and its fractions (DCM, EA, ButOH) could have better or similar antioxidant action to standars and among themselves in vitro or ex vivo, in brain, stomach and liver of rats. Moreover, we intend to clarify their possible effects on pathogenic bacteria. The eeRo was obtained from the dried leaves subjected to an alcoholic extraction and fractioned. The quantification of the constituents of eeRo and fractions were done by HPLC. The antioxidant proprieties of R. officinalis was analyzed by DPPH•- radical scavenging, total antioxidant, dichlorofluorescein, lipid peroxidation and sodium nitroprusside -induced lipid peroxidation assays. The Minimum inhibitory concentrations of R. officinalis L. were tested with standard strains of danger bacteria. The eeRo, DCM, EA had significant total antioxidant and DPPH•- radical scavenging activities. The DCM and eeRo got significant effects against basal levels of reactive species in liver, stomach and brain. The eeRo and DCM protected the liver and brain against lipid peroxidation. The eeRo, DCM, EA and ButOH had inhibitory effect in the Gram-positive and Gram-negative bacteria. In general way, the DCM and eeRo had the best antioxidant and antibacterial effects among all tested fractions.

13.
Biofouling ; 34(8): 893-911, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30418037

RESUMO

Biofilms are considered important sources of infections on biomedical surfaces, and most infections involving biofilm formation are associated with medical device implants. Therefore, there is an urgent need for new antimicrobial compounds that can combat microbial resistance associated with biofilm formation. In this context, this work aimed to evaluate the antibiofilm action of sulfamethoxazole complexed with Au, Cd, Cu, Ni and Hg on rapidly growing mycobacteria (RGM), as well as to evaluate their safety through cytotoxic assays. The results demonstrate potentiation of the novel compounds in antibiofilm activity, mainly in the complex with Au, which was able to completely inhibit biofilm formation and had the capacity to destroy the biofilm at all the concentrations tested. All cytotoxic data suggest that the majority of sulfamethoxazole metallic derivatives are antimicrobial alternatives, as well as safe molecules, which could be used as potential therapeutic agents for bacterial and biofilm elimination.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Metais/química , Mycobacterium/efeitos dos fármacos , Sulfametoxazol/análogos & derivados , Sulfametoxazol/farmacologia , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium/fisiologia , Sulfametoxazol/química
14.
Microb Pathog ; 125: 393-400, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30290269

RESUMO

The antibacterial activity of sulfadiazine Au-PPh3, sulfadiazine Ph2P-Au-Au-PPh2, sulfamethoxazole Au-PPh3, sulfamethoxazole Ph2P-Au-Au-PPh2, sulfamethoxazole Au-PPh3 were tested against Pseudomonas aeruginosa. The antibacterial activity of sulfonamide was tested against P. aeruginosa through the MIC assay, quantitative analysis of biofilm inhibition and observation of biofilm formation with fluorescence microscopy. Besides, the compounds presented remarkable inhibition of P. aeruginosa biofilm formation. Furthermore, molecular docking was performed to identify the key structural features of these compounds with the binding site of the LasR receptor.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ouro/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sulfonamidas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ouro/química , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Ligação Proteica , Pseudomonas aeruginosa/fisiologia , Sulfonamidas/química , Transativadores/química , Transativadores/metabolismo
15.
Microb Pathog ; 123: 440-448, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30086343

RESUMO

The drug-resistant strains of Staphylococcus aureus have been considered as one of the serious health threats, which are related to high patient hospitalization rates. Besides, Staphylococcus aureus biofilm formation exhibits a drug-tolerant nature and shows nonspecific resistance against a broad-spectrum of antibiotics. The emergence of drug-resistant bacteria stimulated the development of novel medicines as a strategy to control infections. In this study, we evaluated the antibacterial and anti-biofilm activity of gold-complexed sulfonamides against Staphylococcus aureus strains such as methicillin-resistant S. aureus and clinical isolates. Our data showed that the exposure of gold-complexed sulfonamides promoted a remarkable reduction in the bacterial adhesion. Also, confocal microscopy displayed the effects of the compounds on in the bacterial cell biofilm, revealed that the compounds decreased the biofilm formation. Our results also demonstrated that gold-complexed sulfonamides exhibited potent antibacterial activity against Staphylococcus aureus strains. Besides, all compounds presented a synergic antibacterial activity when were associated with classical antibiotics. Gold-complexed sulfonamide compounds did not promote toxic effects on Caenorhabditis elegans. Thus, our results showed that the coordination of sulfonamide with gold is a promising alternative in the development of safe and active compounds against methicillin-resistant and clinical isolates S. aureus.


Assuntos
Biofilmes/efeitos dos fármacos , Ouro/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Brasil , Caenorhabditis elegans/efeitos dos fármacos , Sinergismo Farmacológico , Ouro/química , Humanos , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Testes de Toxicidade
16.
Toxicol Rep ; 5: 585-592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29854628

RESUMO

Tithonia diversifolia (Hemsl.) A. Gray leaves have long been used to manage neurodegenerative diseases without scientific basis. This study characterized the phenolic constituents, evaluated the antioxidant properties of phenolic extracts from T. diversifolia leaves used as traditional medicine in Africa and its inhibition of key enzymes linked to Alzheimer's disease. The extract was rich in phenolic acids (gallic acid, chlorogenic acid, caffeic acid and p-coumaric acid) and flavonoids (apigenin) and had 1,1-diphenyl-2-picryl-hydrazil radical scavenging abilities (IC50 = 41.05 µg. mL-1), 2,2-Azino-bis3-ethylbenthiazoline-6sulphonic acid radical scavenging ability (IC50 = 33.51 µg. mL-1), iron chelation (IC50 = 38.50 µg. mL-1), reducing power (Fe3+- Fe2+) (7.34 AAEmg/100 g), inhibited acetylcholinesterase (IC50 = 39.27 µg mL-1) and butyrylcholinesterase (IC50 = 35.01 µg mL-1) activities. These results reveal the leaf as a rich source of phenolic compounds with antioxidant and cholinesterase inhibitory activity.

17.
J Basic Clin Physiol Pharmacol ; 29(2): 217-224, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29381472

RESUMO

BACKGROUND: Irvingia gabonensis stem bark is a medicinal plant used in most parts of Africa to manage a number of ailments including neurodegenerative diseases that occur without scientific basis. This work characterized the phenolic composition, evaluated the cholinergic enzymes (acetylcholinesterase, AChE and butyrylcholinesterase, BChE) inhibition, and assessed the antioxidant activity of phenolic extracts from I. gabonensis (Aubry-Lecomte ex O'Rorke) Baill bark. METHODS: Total phenol and flavonoids content was evaluated in addition to antioxidant activity as shown by Fe2+ chelation, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, and 2,2-azino-bis-(3-ethylbenthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability. Inhibitory activities on AChE and BChE were evaluated. RESULTS: The extract was found to be rich in phenolic acid (ellagic acid) and flavonoids (quercetrin, kaempferol, and apigenin). The phenolic extracts displayed DPPH radical scavenging ability (IC50=19.98 µg/mL), ABTS radical scavenging ability (IC50=18.25 µg/mL), iron chelation (IC50=113.10 µg/mL), and reducing power (Fe3+ to Fe2+) (5.94 mg ascorbic acid equivalent/100 g). Extracts of I. gabonensis inhibited AChE (IC50=32.90 µg/mL) and BChE (IC50=41.50 µg/mL) activities in concentration-dependent manner. CONCLUSIONS: Hence, possible mechanism through which the stem bark executes their anti-Alzheimer's disease activity might be by inhibiting cholinesterase activities in addition to suppressing oxidative-stress-induced neurodegeneration.


Assuntos
Acetilcolinesterase/química , Antioxidantes/química , Butirilcolinesterase/química , Celulose/química , Inibidores da Colinesterase/química , Casca de Planta/química , Extratos Vegetais/química , Apigenina/química , Benzotiazóis/química , Compostos de Bifenilo/química , Flavonoides/química , Sequestradores de Radicais Livres/química , Quempferóis/química , Fenóis/química , Picratos/química , Plantas Medicinais/química , Quercetina/análogos & derivados , Quercetina/química , Ácidos Sulfônicos/química
18.
Microb Pathog ; 113: 335-341, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29122674

RESUMO

Rapidly growing mycobacteria (RGM) are opportunistic microorganisms that can cause both local and disseminated infections. When in biofilm, these pathogens become highly resistant to antimicrobials used in clinical practice. Composed abundantly of polymeric substances, biofilms delay the diffusion of antimicrobials, preventing the drug from penetrating the deeper layers and having an effective action. Therefore, the search for new and alternative therapeutic options has become of fundamental importance. Natural products fall into these options, especially essential oils. However, these oils present problems, such as low miscibility in water (which decreases its bioavailability) and degradation by light and temperature. Thus, the objective of this work was to explore the action of free essential oil and nanoemulsions of Cymbopogon flexuosus on strains of RGM, in planktonic and sessile forms. In this work, standard strains of Mycobacterium fortuitum (ATCC 6841), Mycobacterium massiliense (ATCC 48898) and Mycobacterium abscessus (ATCC 19977) were used. The susceptibility of the microorganisms in planktonic form was obtained by conventional microdilution techniques and by cell viability curve. The analysis of the antibiofilm activity was performed by a semi-quantitative macrotechnique. The nanoemulsion exhibited significant antimicrobial activity, with minimum inhibitory concentration values lower than those presented by the free essential oil, against strains in the planktonic state. However, both were efficient in destroying the already formed biofilm, whereas only the free oil inhibited the formation of mycobacterial biofilm. This study demonstrated the therapeutic potential of C. flexuosus essential oil, especially in its nanostructured form, which can be demonstrated against infections caused by rapidly growing mycobacteria.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cymbopogon/química , Micobactérias não Tuberculosas/efeitos dos fármacos , Óleos Voláteis/farmacologia , Exsudatos de Plantas/farmacologia , Biofilmes/crescimento & desenvolvimento , Brasil , Emulsões , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia
19.
Microb Pathog ; 111: 6-13, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28804018

RESUMO

Bacterial biofilms are involved in various medical infections and for this reason it is of great importance understanding adhesion mechanisms of involved microorganisms is essential to develop new strategies of prevention and control. Different approaches have been used for preventing biofilm related infections in health care settings, such as use of surface coatings agents in medical implants. In this context, is necessary to explore new compounds with anti-biofilm activity. Thus, this study evaluated for the first time the action of A22 against biofilms of Pseudomonas aeruginosa PAO1 strain and multi-resistant clinical isolates on biotic and abiotic surfaces. A22 acts as inhibitor of the MreB protein of the bacterial cell wall, causing the rods to change shape to the coccoid form. In this work, A22 at subinhibitory concentrations was able to prevent biofilm formation, and atomic force microscopy images showed that A22 was highly effective in inhibiting adhesion on polyethylene surfaces. Pseudomonas aeruginosa PAO1 exhibited a strong ability to adhere to HeLa cells, and A22 inhibited the aggregation after 4 h of exposure. Swarming and twitching motilities were significantly altered by A22 at subinhibitory concentrations. Thus, by changing the shape of the bacterial cell, many properties can be affected, such as motility, surface adhesion and biofilm formation. This work presents A22 as a promising novel antibacterial or surface coating agent of medical materials.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Tioureia/análogos & derivados , Proteínas de Bactérias/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Parede Celular , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Polietileno , Tioureia/antagonistas & inibidores , Fatores de Tempo
20.
J Photochem Photobiol B ; 167: 29-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28039787

RESUMO

Scutia buxifolia Reissek (Rhamnaceae), popularly known in Brazil as "coronilha", is a plant species used in folk medicine for several disorders, including inflammation. However, no studies have been done with this species to confirm its topical anti-inflammatory action. In this study we evaluate the topical antiedematogenic and anti-inflammatory effects of the gel containing crude extract (CE) and the gel containing ethyl acetate (EtOAc) fraction of S. buxifolia on croton oil or UVB radiation-induced ear edema in mice, and perform gel stability study. Antiedematogenic and anti-inflammatory effects were evaluated through ear edema induced by irritant agent croton oil, UVB irradiation-induced skin injury model and neutrophil infiltration. The gel stability study was performed by analyzing organoleptical aspects, pH, viscosity, and quantification of quercetin and rutin by HPLC. The topical treatment with S. buxifolia gel reduced the ear edema and myeloperoxidase activity. Antiedematogenic and anti-inflammatory effects of S. buxifolia were obtained with concentrations of 0.3, 1 and 3%, with maximal inhibition in the concentration of 1% for gel containing CE (inhibitions of 100, 73±0.05 and 97±0.08% for croton oil- or UVB irradiation-induced ear edema and myeloperoxidase activity, respectively) and EtOAc fraction (inhibitions of 79±0.05, 73±0.05 and 89±0.04% for croton oil- or UVB irradiation-induced ear edema and myeloperoxidase activity, respectively). Such effects may be attributed, at least in part, to rutin and quercetin, as well as other compounds found in this species. No important changes were detected in the stability study, in all aspects analyzed in temperature below 25°C. Our results demonstrate that topically applied S. buxifolia gel presented anti-inflammatory effects, provided that it was maintained at a temperature below 25°C.


Assuntos
Anti-Inflamatórios/uso terapêutico , Edema/tratamento farmacológico , Géis , Rhamnaceae/química , Administração Tópica , Animais , Anti-Inflamatórios/administração & dosagem , Óleo de Cróton/toxicidade , Estabilidade de Medicamentos , Edema/etiologia , Masculino , Camundongos , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...