Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(6-1): 064307, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464662

RESUMO

The relation between spontaneous and stimulated brain activity is a fundamental question in neuroscience which has received wide attention in experimental studies. Recently, it has been suggested that the evoked response to external stimuli can be predicted from temporal correlations of spontaneous activity. Previous theoretical results, confirmed by the comparison with magnetoencephalography data for human brains, were obtained for the Wilson-Cowan model in the condition of balance of excitation and inhibition, a signature of a healthy brain. Here we extend previous studies to imbalanced conditions by examining a region of parameter space around the balanced fixed point. Analytical results are compared to numerical simulations of Wilson-Cowan networks. We evidence that in imbalanced conditions the functional form of the time correlation and response functions can show several behaviors, exhibiting also an oscillating regime caused by the emergence of complex eigenvalues. The analytical predictions are fully in agreement with numerical simulations, validating the role of cross-correlations in the response function. Furthermore, we identify the leading role of inhibitory neurons in controlling the overall activity of the system, tuning the level of excitability and imbalance.


Assuntos
Encéfalo , Neurônios , Humanos , Neurônios/fisiologia , Encéfalo/fisiologia
2.
Phys Rev E ; 107(3-1): 034404, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073019

RESUMO

We study a stochastic version of the Wilson-Cowan model of neural dynamics, where the response function of neurons grows faster than linearly above the threshold. The model shows a region of parameters where two attractive fixed points of the dynamics exist simultaneously. One fixed point is characterized by lower activity and scale-free critical behavior, while the second fixed point corresponds to a higher (supercritical) persistent activity, with small fluctuations around a mean value. When the number of neurons is not too large, the system can switch between these two different states with a probability depending on the parameters of the network. Along with alternation of states, the model displays a bimodal distribution of the avalanches of activity, with a power-law behavior corresponding to the critical state, and a bump of very large avalanches due to the high-activity supercritical state. The bistability is due to the presence of a first-order (discontinuous) transition in the phase diagram, and the observed critical behavior is connected with the line where the low-activity state becomes unstable (spinodal line).

3.
PLoS Comput Biol ; 17(8): e1008884, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460811

RESUMO

Spontaneous brain activity is characterized by bursts and avalanche-like dynamics, with scale-free features typical of critical behaviour. The stochastic version of the celebrated Wilson-Cowan model has been widely studied as a system of spiking neurons reproducing non-trivial features of the neural activity, from avalanche dynamics to oscillatory behaviours. However, to what extent such phenomena are related to the presence of a genuine critical point remains elusive. Here we address this central issue, providing analytical results in the linear approximation and extensive numerical analysis. In particular, we present results supporting the existence of a bona fide critical point, where a second-order-like phase transition occurs, characterized by scale-free avalanche dynamics, scaling with the system size and a diverging relaxation time-scale. Moreover, our study shows that the observed critical behaviour falls within the universality class of the mean-field branching process, where the exponents of the avalanche size and duration distributions are, respectively, 3/2 and 2. We also provide an accurate analysis of the system behaviour as a function of the total number of neurons, focusing on the time correlation functions of the firing rate in a wide range of the parameter space.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Animais , Biologia Computacional , Simulação por Computador , Fenômenos Eletrofisiológicos , Humanos , Modelos Lineares , Rede Nervosa/fisiologia , Neurônios/fisiologia , Análise Espaço-Temporal , Processos Estocásticos
4.
Phys Rev E ; 97(6-1): 062305, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011436

RESUMO

Many experimental results, both in vivo and in vitro, support the idea that the brain cortex operates near a critical point and at the same time works as a reservoir of precise spatiotemporal patterns. However, the mechanism at the basis of these observations is still not clear. In this paper we introduce a model which combines both these features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a first-order transition, with many spatiotemporal patterns stored as dynamical metastable attractors. Specifically, we studied a network of leaky integrate-and-fire neurons whose connections are the result of the learning of multiple spatiotemporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that the network shows a first-order transition between a low-spiking-rate disordered state (down), and a high-rate state characterized by the emergence of collective activity and the replay of one of the stored patterns (up). The transition is characterized by hysteresis, or alternation of up and down states, depending on the lifetime of the metastable states. In both cases, critical features and neural avalanches are observed. Notably, critical phenomena occur at the edge of a discontinuous phase transition, as recently observed in a network of glow lamps.

5.
Chaos ; 26(7): 073103, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475063

RESUMO

Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Humanos
6.
Sci Rep ; 6: 26481, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27221056

RESUMO

Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for such systems by considering the behavior of the density correlator 〈q(t)〉 and the dynamical susceptibility 〈q(2)(t)〉 - 〈q(t)〉(2). Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al. (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension dc = 8.

7.
Front Syst Neurosci ; 8: 88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904311

RESUMO

Complex collective activity emerges spontaneously in cortical circuits in vivo and in vitro, such as alternation of up and down states, precise spatiotemporal patterns replay, and power law scaling of neural avalanches. We focus on such critical features observed in cortical slices. We study spontaneous dynamics emerging in noisy recurrent networks of spiking neurons with sparse structured connectivity. The emerging spontaneous dynamics is studied, in presence of noise, with fixed connections. Note that no short-term synaptic depression is used. Two different regimes of spontaneous activity emerge changing the connection strength or noise intensity: a low activity regime, characterized by a nearly exponential distribution of firing rates with a maximum at rate zero, and a high activity regime, characterized by a nearly Gaussian distribution peaked at a high rate for high activity, with long-lasting replay of stored patterns. Between this two regimes, a transition region is observed, where firing rates show a bimodal distribution, with alternation of up and down states. In this region, one observes neuronal avalanches exhibiting power laws in size and duration, and a waiting time distribution between successive avalanches which shows a non-monotonic behavior. During periods of high activity (up states) consecutive avalanches are correlated, since they are part of a short transient replay initiated by noise focusing, and waiting times show a power law distribution. One can think at this critical dynamics as a reservoire of dynamical patterns for memory functions.

8.
Soft Matter ; 10(27): 4800-5, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24828914

RESUMO

The structural arrest of a polymeric suspension might be driven by an increase of the cross-linker concentration, which drives the gel transition, as well as by an increase of the polymer density, which induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur within the gel phase, and the gel transition might be induced in a polymer suspension with glassy features. Here we study the interplay of these transitions by investigating via event-driven molecular dynamics simulation the relaxation dynamics of a polymeric suspension as a function of the cross-linker concentration and the monomer volume fraction. We show that the slow dynamics within the gel phase is characterized by a long sub-diffusive regime, which is due both to the crowding as well as to the presence of a percolating cluster. In this regime, the transition of structural arrest is found to occur either along the gel or along the glass line, depending on the length scale at which the dynamics is probed. Where the two lines meet there is no apparent sign of higher order dynamical singularity. Logarithmic behavior typical of A3 singularity appears inside the gel phase along the glass transition line. These findings seem to be related to the results of the mode coupling theory for the F13 schematic model.

9.
PLoS One ; 8(6): e64162, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840301

RESUMO

We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.


Assuntos
Simulação por Computador , Modelos Neurológicos , Rede Nervosa/fisiologia , Algoritmos , Encéfalo/fisiologia , Neurônios/fisiologia
10.
Biosystems ; 112(3): 258-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23542676

RESUMO

We consider a network of leaky integrate and fire neurons, whose learning mechanism is based on the Spike-Timing-Dependent Plasticity. The spontaneous temporal dynamic of the system is studied, including its storage and replay properties, when a Poissonian noise is added to the post-synaptic potential of the units. The temporal patterns stored in the network are periodic spatiotemporal patterns of spikes. We observe that, even in absence of a cue stimulation, the spontaneous dynamics induced by the noise is a sort of intermittent replay of the patterns stored in the connectivity and a phase transition between a replay and non-replay regime exists at a critical value of the spiking threshold. We characterize this transition by measuring the order parameter and its fluctuations.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Somação de Potenciais Pós-Sinápticos/fisiologia , Processos Estocásticos , Fatores de Tempo
11.
Phys Rev Lett ; 107(6): 065703, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902342

RESUMO

We investigate the relaxation process and the dynamical heterogeneities of the kinetically constrained Kob-Andersen lattice glass model and show that these are characterized by different time scales. The dynamics is well described within the diffusing defect paradigm, which suggests that we relate the relaxation process to a reverse-percolation transition. This allows for a geometrical interpretation of the relaxation process and of the different time scales.

12.
J Phys Chem B ; 115(48): 14274-9, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21770381

RESUMO

We study the dynamical behavior in chemical gelation, as the gelation threshold is approached from the sol phase. On the basis of the heterogeneous diffusion due to the cluster size distribution, as expected by the percolation theory, we predict the long time decay of the self-overlap as a power law in time t(-3/2). Moreover, under the hypothesis that the cluster diffusion coefficient decreases in size as a power law, s(-x), the fluctuation of the self-overlap, χ(4)(t), exhibits growth at short time as t((3-τ)/x), where τ is the cluster size distribution critical exponent. At longer times, χ(4)(t) decays as t(-3/2) while, at intermediate times, it reaches a maximum at time t*, which scales as s*(x), where s* is the size of the critical cluster. Finally, the value of the maximum χ(4)(t*) scales as the mean cluster size. The theoretical predictions are in agreement with molecular dynamic calculations in a model system, where spherical monomers are bonded by a finite extendable nonlinear elastic (FENE) potential.

13.
J Phys Chem B ; 115(22): 7281-7, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21319855

RESUMO

We study the dynamical properties of a model for charged colloidal particles, performing molecular dynamics simulations and observing the behavior of bond persistence functions, self-intermediate scattering functions at different wave vectors, and mean-square displacements of the particles, in three different regimes of the volume fraction. At the lowest volume fraction the system displays properties very similar to those of a gelling system, which can be interpreted in terms of the distribution of cluster sizes, with a peak in the dynamical susceptibility at the lowest wave vector. At the highest volume fraction, a percolating network of bonds is always present, and the system is strongly reminiscent of strong glasses, with the maximum in the dynamical susceptibility increasing when the temperature is lowered, and an Arrhenius dependence of the relaxation times. At intermediate volume fractions, a complex behavior is found, where both the distribution of cluster sizes and the intercluster correlations due to crowding are important.

14.
Artigo em Inglês | MEDLINE | ID: mdl-21423518

RESUMO

We study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate and fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre and postsynaptic activity. We store multiple patterns and study the network capacity. For the analog model, we find that the network capacity scales linearly with the network size, and that both capacity and the oscillation frequency of the retrieval state depend on the asymmetry of the learning time window. In addition to fully connected networks, we study sparse networks, where each neuron is connected only to a small number z ≪ N of other neurons. Connections can be short range, between neighboring neurons placed on a regular lattice, or long range, between randomly chosen pairs of neurons. We find that a small fraction of long range connections is able to amplify the capacity of the network. This imply that a small-world-network topology is optimal, as a compromise between the cost of long range connections and the capacity increase. Also in the spiking integrate and fire model the crucial result of storing and retrieval of multiple phase-coded patterns is observed. The capacity of the fully-connected spiking network is investigated, together with the relation between oscillation frequency of retrieval state and window asymmetry.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 1): 041914, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19905349

RESUMO

Amyloidlike proteins form highly organized aggregates, such as fibrils and plaques, preceded by the assembly of a wide range of unstructured oligomers and protofibrils. Despite their importance in a number of human neurodegenerative diseases, a comprehensive understanding of their kinetics and thermodynamics is still missing. We investigate, by computer simulations, a realistic model of amyloid molecules interacting via the experimentally determined Derjaguin-Landau-Verwey-Overbeek potential and derive its phase diagram. We show that fibrils and plaques, along with their precursors, correspond to different equilibrium and metastable thermodynamics phases and discuss the dynamical mechanisms leading to the nucleation and self-assembly of large scale structures.


Assuntos
Amiloide/química , Amiloide/metabolismo , Modelos Moleculares , Placa Amiloide/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína , Simulação por Computador , Cinética , Termodinâmica
16.
Sci STKE ; 2007(378): pl1, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17374853

RESUMO

The ability of eukaryotic cells to navigate along spatial gradients of extracellular guidance cues is crucial for embryonic development, tissue regeneration, and cancer progression. One proposed model for chemotaxis is a phosphoinositide-based phase separation process, which takes place at the plasma membrane upon chemoattractant stimulation and triggers directional motility of eukaryotic cells. Here, we make available virtual-cell software that allows the execution and spatiotemporal analysis of in silico chemotaxis experiments, in which the user can control physical and chemical parameters as well as the number and position of chemoattractant sources.


Assuntos
Quimiotaxia/fisiologia , Simulação por Computador , Células Eucarióticas/fisiologia , Modelos Biológicos , Software , Membrana Celular/fisiologia , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Sistemas Computacionais , Citosol/fisiologia , Apresentação de Dados , Células Eucarióticas/efeitos dos fármacos , Lipídeos de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Microcomputadores , Concentração Osmolar , Fosfatidilinositóis/fisiologia , Processos Estocásticos
17.
Proc Natl Acad Sci U S A ; 102(47): 16927-32, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16291809

RESUMO

The ability of cells to sense spatial gradients of chemoattractant factors governs the development of complex eukaryotic organisms. Cells exposed to shallow chemoattractant gradients respond with strong accumulation of the enzyme phosphatidylinositol 3-kinase (PI3K) and its D3-phosphoinositide product (PIP(3)) on the plasma membrane side exposed to the highest chemoattractant concentration, whereas PIP(3)-degrading enzyme PTEN and its product PIP(2) localize in a complementary pattern. Such an early symmetry-breaking event is a mandatory step for directed cell movement elicited by chemoattractants, but its physical origin is still mysterious. Here, we propose that directional sensing is the consequence of a phase-ordering process mediated by phosphoinositide diffusion and driven by the distribution of chemotactic signal. By studying a realistic reaction-diffusion lattice model that describes PI3K and PTEN enzymatic activity, recruitment to the plasma membrane, and diffusion of their phosphoinositide products, we show that the effective enzyme-enzyme interaction induced by catalysis and diffusion introduces an instability of the system toward phase separation for realistic values of physical parameters. In this framework, large reversible amplification of shallow chemotactic gradients, selective localization of chemical factors, macroscopic response timescales, and spontaneous polarization arise naturally. The model is robust with respect to order-of-magnitude variations of the parameters.


Assuntos
Quimiotaxia/fisiologia , Células Eucarióticas , Modelos Biológicos , Simulação por Computador , Células Eucarióticas/enzimologia , Células Eucarióticas/metabolismo , Células Eucarióticas/fisiologia , Membranas Artificiais , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositóis/metabolismo , Processos Estocásticos
18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 016132, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11800761

RESUMO

We perform large scale simulations of the frustrated Ising lattice gas, a three-dimensional lattice model of a structural glass, using the parallel tempering technique. We evaluate the spin and density overlap distributions, and the corresponding nonlinear susceptibilities, as a function of the chemical potential. We then evaluate the relaxation functions of the spin and density self-overlap, and study the behavior of the relaxation times. The results suggest that the spin variables undergo a transition very similar to the one of the Ising spin glass, while the density variables do not show any sign of transition at the same chemical potential. It may be that the density variables undergo a transition at a higher chemical potential, inside the phase where the spins are frozen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...