Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oral Pathol Med ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807455

RESUMO

BACKGROUND: The purpose of this systematic review (SR) is to gather evidence on the use of machine learning (ML) models in the diagnosis of intraosseous lesions in gnathic bones and to analyze the reliability, impact, and usefulness of such models. This SR was performed in accordance with the PRISMA 2022 guidelines and was registered in the PROSPERO database (CRD42022379298). METHODS: The acronym PICOS was used to structure the inquiry-focused review question "Is Artificial Intelligence reliable for the diagnosis of intraosseous lesions in gnathic bones?" The literature search was conducted in various electronic databases, including PubMed, Embase, Scopus, Cochrane Library, Web of Science, Lilacs, IEEE Xplore, and Gray Literature (Google Scholar and ProQuest). Risk of bias assessment was performed using PROBAST, and the results were synthesized by considering the task and sampling strategy of the dataset. RESULTS: Twenty-six studies were included (21 146 radiographic images). Ameloblastomas, odontogenic keratocysts, dentigerous cysts, and periapical cysts were the most frequently investigated lesions. According to TRIPOD, most studies were classified as type 2 (randomly divided). The F1 score was presented in only 13 studies, which provided the metrics for 20 trials, with a mean of 0.71 (±0.25). CONCLUSION: There is no conclusive evidence to support the usefulness of ML-based models in the detection, segmentation, and classification of intraosseous lesions in gnathic bones for routine clinical application. The lack of detail about data sampling, the lack of a comprehensive set of metrics for training and validation, and the absence of external testing limit experiments and hinder proper evaluation of model performance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37037738

RESUMO

OBJECTIVE: The present study aims to quantify clinicians' perceptions of oral potentially malignant disorders (OPMDs) when evaluating, classifying, and manually annotating clinical images, as well as to understand the source of inter-observer variability when assessing these lesions. The hypothesis was that different interpretations could affect the quality of the annotations used to train a Supervised Learning model. STUDY DESIGN: Forty-six clinical images from 37 patients were reviewed, classified, and manually annotated at the pixel level by 3 labelers. We compared the inter-examiner assessment based on clinical criteria through the κ statistics (Fleiss's kappa). The segmentations were also compared using the mean pixel-wise intersection over union (IoU). RESULTS: The inter-observer agreement for homogeneous/non-homogeneous criteria was substantial (κ = 63, 95% CI: 0.47-0.80). For the subclassification of non-homogeneous lesions, the inter-observer agreement was moderate (κ = 43, 95% CI: 0.34-0.53) (P < .001). The mean IoU of 0.53 (±0.22) was considered low. CONCLUSION: The subjective clinical assessment (based on human visual observation, variable criteria that have suffered adjustments over the years, different educational backgrounds, and personal experience) may explain the source of inter-observer discordance for the classification and annotation of OPMD. Therefore, there is a strong probability of transferring the subjectivity of human analysis to artificial intelligence models. The use of large data sets and segmentation based on the union of all labelers' annotations holds the potential to overcome this limitation.


Assuntos
Inteligência Artificial , Lesões Pré-Cancerosas , Humanos , Curadoria de Dados , Variações Dependentes do Observador , Aprendizado de Máquina Supervisionado , Percepção
3.
J Oral Pathol Med ; 52(2): 109-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599081

RESUMO

INTRODUCTION: Artificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning. METHODS: The authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view. CONCLUSION: The development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.


Assuntos
Inteligência Artificial , Medicina Bucal , Humanos , Patologia Bucal , Redes Neurais de Computação , Aprendizado de Máquina
4.
IEEE Access ; 8: 172563-172580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34786291

RESUMO

The world faces a pandemic not previously experienced in modern times. The internal mechanism of SARS-Cov-2 is not well known and there are no Pharmaceutical Interventions available. To stem the spread of the virus, measures of respiratory etiquette, social distancing and hand hygiene have been recommended. Based on these measures, some countries have already managed to control the COVID-19 propagation, although in the absence of pharmaceutical interventions, this control is not definitive. However, we have seen that social heterogeneity across populations makes the effects of COVID-19 also different. Social inequality affects the population of developing countries not only from an economic point of view. The relationship between social inequality and the health condition is not new, but it becomes even more evident in times of crisis, such as the one the world has been facing with COVID-19. How does social inequality affect the COVID-19 propagation in developing countries is the object of this study. We propose a new epidemic SEIR model based on social indicators to predict outbreak and mortality of COVID-19. The estimated number of infected and fatalities are compared with different levels of Non-Pharmaceutical Interventions. We present a case study for the Deep Brazil. The results showed that social inequality has a strong effect on the propagation of COVID-19, increasing its damage and accelerating the collapse of health infrastructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...