Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(30): 20257-20269, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30039138

RESUMO

In this report we present a systematic structural and magnetic analysis of Co-doped ZnO nanoparticles prepared via a microwave-assisted hydrothermal route. The structural data confirm the incorporation of Co ions into the wurtzite ZnO lattice and a Co concentration mainly near/at the surface of the nanoparticles. This Co spatial distribution is set to passivate the surface of the ZnO nanoparticles, inhibiting the nanoparticle growth and suppressing the observation of a ferromagnetic phase. Based on experimental and theoretical results we propose a kinetic-thermodynamic model for the processes of nucleation and growth of the Co-doped ZnO nanoparticles, and attribute the observed ferromagnetic order to a ferromagnetism associated with specific defects and adsorbed elements at the surface of the nanoparticle. Our findings give valuable contribution to the understanding of both the doping process at the nanoscale and the nature of the magnetic properties of the Co-doped ZnO system.

2.
Parasit Vectors ; 9: 107, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911930

RESUMO

BACKGROUND: Arthropod-borne diseases are some of the most rapidly spreading diseases. Reducing the vector population is currently the only effective way to reduce case numbers. Central metabolic pathways are potential targets to control vector populations, but have not been well explored to this aim. The information available on energy metabolism, as a way to control lifespan and dispersion through flight of dipteran vectors, is inadequate. METHODS: Phosphofructokinase (PFK) activity was measured in the presence of both of its substrates, fructose-6-phosphate (F6P) and ATP, as well as some allosteric effectors: Fructose- 2,6 - bisphosphate (F2, 6BP), citrate and AMP. Aedes aegypti phosphofructokinase sequence (AaPFK) was aligned with many other insects and also vertebrate sequences. A 3D AaPFK model was produced and docking experiments were performed with AMP and citrate. RESULTS: The kinetic parameters of AaPFK were determined for both substrates: F6P (V = 4.47 ± 0.15 µmol of F1, 6BP/min, K0.5 = 1.48 ± 0.22 mM) and ATP (V = 4.73 ± 0.57 µmol of F1, 6BP/min, K0.5 = 0.43 ± 0.10 mM). F2,6P was a powerful activator of AaPFK, even at low ATP concentrations. AaPFK inhibition by ATP was not enhanced by citrate, consistent with observations in other insects. After examining the sequence alignment of insect and non-insect PFKs, the hypothesis is that a modification of the citrate binding site is responsible for this unique behavior. AMP, a well-known positive effector of PFK, was not capable of reverting ATP inhibition. Aedes, Anopheles and Culex are dengue, malaria and filariasis vectors, respectively, and are shown to have this distinct characteristic in phosphofructokinase control. The alignment of several insect PFKs suggested a difference in the AMP binding site and a significant change in local charges, which introduces a highly negative charge in this part of the protein, making the binding of AMP unlikely. This hypothesis was supported by 3D modeling of PFK with AMP docking, which suggested that the AMP molecule binds in a reverse orientation due to the electrostatic environment. The present findings imply a potential new way to control PFK activity and are a unique feature of these Diptera. CONCLUSIONS: The present findings provide the first molecular explanation for citrate insensitivity in insect PFKs, as well as demonstrating for the first time AMP insensitivity in dipterans. It also identified a potential target for novel insecticides for the control of arthropod-borne diseases.


Assuntos
Culicidae/enzimologia , Culicidae/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Insetos Vetores , Fosfofrutoquinase-1/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Citratos/metabolismo , Frutosedifosfatos/metabolismo , Frutosefosfatos/metabolismo , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosfofrutoquinase-1/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA