Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 62(4): 585-600, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34386968

RESUMO

Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.


Assuntos
Pool Gênico , Phaseolus , Variação Genética , Genótipo , Repetições de Microssatélites , Phaseolus/genética
2.
BMC Plant Biol ; 21(1): 343, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34284717

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris L.) is a legume whose grain can be stored for months, a common practice among Brazilian growers. Over time, seed coats become darker and harder to cook, traits that are undesirable to consumers, who associate darker-colored beans with greater age. Like commercial pinto and cranberry bean varieties, carioca beans that have darker seeds at harvest time and after storage are subject to decreased market values. RESULTS: The goal of our study was to identify the genetic control associated with lightness of seed coat color at harvest (HL) and with tolerance to post-harvest seed coat darkening (PHD) by a genome-wide association study. For that purpose, a carioca diversity panel previously validated for association mapping studies was used with 138 genotypes and 1,516 high-quality SNPs. The panel was evaluated in two environments using a colorimeter and the CIELAB scale. Shelf storage for 30 days had the most expressive results and the L* (luminosity) parameter led to the greatest discrimination of genotypes. Three QTL were identified for HL, two on chromosome Pv04 and one on Pv10. Regarding PHD, results showed that genetic control differs for L* after 30 days and for the ΔL* (final L*-initial L*); only ΔL* was able to properly express the PHD trait. Four phenotypic classes were proposed, and five QTL were identified through six significant SNPs. CONCLUSIONS: Lightness of seed coat color at harvest showed an oligogenic inheritance corroborated by moderate broad-sense heritability and high genotypic correlation among the experiments. Only three QTL were significant for this trait - two were mapped on Pv04 and one on Pv10. Considering the ΔL, six QTL were mapped on four different chromosomes for PHD. The same HL QTL at the beginning of Pv10 was also associated with ΔL* and could be used as a tool in marker-assisted selection. Several candidate genes were identified and may be useful to accelerate the genetic breeding process.


Assuntos
Phaseolus/crescimento & desenvolvimento , Phaseolus/genética , Pigmentação/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Brasil , Mapeamento Cromossômico , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Cruzamentos Genéticos , Frutas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Fatores de Tempo
3.
Front Plant Sci ; 12: 647043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927738

RESUMO

Angular leaf spot (ALS) is a disease that causes major yield losses in the common bean crop. Studies based on different isolates and populations have already been carried out to elucidate the genetic mechanisms of resistance to ALS. However, understanding of the interaction of this resistance with the reproductive stages of common bean is lacking. The aim of the present study was to identify ALS resistance loci at different plant growth stages (PGS) by association and linkage mapping approaches. An BC2F3 inter-gene pool cross population (AND 277 × IAC-Milênio - AM population) profiled with 1,091 SNPs from genotyping by sequencing (GBS) was used for linkage mapping, and a carioca diversity panel (CDP) genotyped by 5,398 SNPs from BeadChip assay technology was used for association mapping. Both populations were evaluated for ALS resistance at the V2 and V3 PGSs (controlled conditions) and R8 PGS (field conditions). Different QTL (quantitative trait loci) were detected for the three PGSs and both populations, showing a different quantitative profile of the disease at different plant growth stages. For the three PGS, multiple interval mapping (MIM) identified seven significant QTL, and the Genome-wide association study (GWAS) identified fourteen associate SNPs. Several loci validated regions of previous studies, and Phg-1, Phg-2, Phg-4, and Phg-5, among the 5 loci of greatest effects reported in the literature, were detected in the CDP. The AND 277 cultivar contained both the Phg-1 and the Phg-5 QTL, which is reported for the first time in the descendant cultivar CAL143 as ALS10.1UC. The novel QTL named ALS11.1AM was located at the beginning of chromosome Pv11. Gene annotation revealed several putative resistance genes involved in the ALS response at the three PGSs, and with the markers and loci identified, new specific molecular markers can be developed, representing a powerful tool for common bean crop improvement and for gain in ALS resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA