Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851651

RESUMO

In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016-2019 outbreak in southeast Brazil. Our analysis revealed that the genetic diversity and spatial distribution of the sylvatic transmission of YFV in RJ originated from at least two introductions and followed two chains of dissemination, here named the YFV RJ-I and YFV RJ-II clades. They moved with similar dispersal speeds from the north to the south of the RJ state in parallel directions, separated by the Serra do Mar Mountain chain, with YFV RJ-I invading the north coast of São Paulo state. The YFV RJ-I clade showed a more significant heterogeneity across the entire polyprotein. The YFV RJ-II clade, with only two amino acid polymorphisms, mapped at NS1 (I1086V), present only in mosquitoes at the same locality and NS4A (I2176V), shared by all YFV clade RJ-II, suggests a recent clustering of YFV isolates collected from different hosts. Our analyses strengthen the role of surveillance, genomic analyses of YVF isolated from other hosts, and environmental studies into the strategies to forecast, control, and prevent yellow fever outbreaks.


Assuntos
Culicidae , Febre Amarela , Animais , Vírus da Febre Amarela/genética , Febre Amarela/epidemiologia , Brasil/epidemiologia , Filogenia , Mosquitos Vetores , Florestas
2.
Front Microbiol ; 13: 757084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237244

RESUMO

Since the beginning of the XXI Century, the yellow fever virus (YFV) has been cyclically spreading from the Amazon basin to Brazil's South and Southeast regions, culminating in an unprecedented outbreak that started in 2016. In this work, we studied four YFV isolated from non-human primates obtained during outbreaks in the states of Rio Grande do Sul in 2008 (PR4408), Goiás (GO05), and Espírito Santo (ES-504) in 2017, and Rio de Janeiro (RJ 155) in 2019. These isolates have genomic differences mainly distributed in non-structural proteins. We compared the isolates' rates of infection in mammal and mosquito cells and neurovirulence in adult mice. RJ 155 and PR4408 YFV isolates exhibited higher infectivity in mammalian cells and neurovirulence in mice. In mosquito Aag2 cells, GO05 and PR4408 displayed the lowest proliferation rates. These results suggest that RJ 155 and PR4408 YFV isolates carry some genomic markers that increase infectivity in mammal hosts. From this characterization, it is possible to contribute to discovering new molecular markers for the virulence of YFV.

3.
Front Microbiol ; 10: 1079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178835

RESUMO

The current outbreak of yellow fever virus (YFV) that is afflicting Brazil since the end of 2016 probably originated from a re-introduction of YFV from endemic areas into the non-endemic Southeastern Brazil. However, the lack of genomic sequences from endemic regions hinders the tracking of YFV's dissemination routes. We assessed the origin and spread of the ongoing YFV Brazilian outbreak analyzing a new set of YFV strains infecting humans, non-human primates (NHPs) and mosquitoes sampled across five Brazilian states from endemic and non-endemic regions between 2015 and 2018. We found two YFV sub-clade 1E lineages circulating in NHP from Goiás state (GO), resulting from independent viral introductions into the Araguaia tributary river basin: while one strain from 2017 clustered intermingled with Venezuelan YFV strains from 2000, the other YFV strains sampled in 2015 and 2017 clustered with sequences of the current YFV outbreak in the Brazilian Southeastern region (named YFV2015-2018 lineage), displaying the same molecular signature associated to the current YFV outbreak. After its introduction in GO at around mid-2014, the YFV2015-2018 lineage followed two paths of dissemination outside GO, originating two major YFV sub-lineages: (1) the YFVMG/ES/RJ sub-lineage spread sequentially from the eastern area of Minas Gerais state to Espírito Santo and then to Rio de Janeiro states, following the Southeast Atlantic basin; (2) the YFVMG/SP sub-lineage spread from the southwestern area of Minas Gerais to the metropolitan region of São Paulo state, following the Paraná basin. These results indicate the ongoing YFV outbreak in Southeastern Brazil originated from a dissemination event from GO almost 2 years before its recognition at the end of 2016. From GO this lineage was introduced in Minas Gerais state at least two times, originating two sub-lineages that followed different routes toward densely populated areas. The spread of YFV outside endemic regions for at least 4 years stresses the imperative importance of the continuous monitoring of YFV to aid decision-making for effective control policies aiming the increase of vaccination coverage to avoid the YFV transmission in densely populated urban centers.

4.
Mem Inst Oswaldo Cruz ; 114: e190076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31038550

RESUMO

BACKGROUND: In Brazil, the Yellow Fever virus (YFV) is endemic in the Amazon, from where it eventually expands into epidemic waves. Coastal south-eastern (SE) Brazil, which has been a YFV-free region for eight decades, has reported a severe sylvatic outbreak since 2016. The virus spread from the north toward the south of the Rio de Janeiro (RJ) state, causing 307 human cases with 105 deaths during the 2016-2017 and 2017-2018 transmission seasons. It is unclear, however, whether the YFV would persist in the coastal Atlantic Forest of RJ during subsequent transmission seasons. OBJECTIVES: To conduct a real-time surveillance and assess the potential persistence of YFV in the coastal Atlantic Forest of RJ during the 2018-2019 transmission season. METHODS: We combined epizootic surveillance with fast diagnostic and molecular, phylogenetic, and evolutionary analyses. FINDINGS: Using this integrative strategy, we detected the first evidence of YFV re-emergence in the third transmission season (2018-2019) in a dying howler monkey from the central region of the RJ state. The YFV detected in 2019 has the molecular signature associated with the current SE YFV outbreak and exhibited a close phylogenetic relationship with the YFV lineage that circulated in the same Atlantic Forest fragment during the past seasons. This lineage circulated along the coastal side of the Serra do Mar mountain chain, and its evolution seems to be mainly driven by genetic drift. The potential bridge vector Aedes albopictus was found probing on the recently dead howler monkey in the forest edge, very close to urban areas. MAIN CONCLUSIONS: Collectively, our data revealed that YFV transmission persisted at the same Atlantic Forest area for at least three consecutive transmission seasons without the need of new introductions. Our real-time surveillance strategy permitted health authorities to take preventive actions within 48 h after the detection of the sick non-human primate. The local virus persistence and the proximity of the epizootic forest to urban areas reinforces the concern with regards to the risk of re-urbanisation and seasonal re-emergence of YFV, stressing the need for continuous effective surveillance and high vaccination coverage in the SE region, particularly in RJ, an important tourist location.


Assuntos
Aedes/virologia , Febre Amarela/epidemiologia , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Alouatta , Animais , Brasil/epidemiologia , Surtos de Doenças , Humanos , Filogeografia , Estações do Ano , População Urbana , Febre Amarela/transmissão
5.
Mem. Inst. Oswaldo Cruz ; 114: e190076, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1002689

RESUMO

BACKGROUND In Brazil, the Yellow Fever virus (YFV) is endemic in the Amazon, from where it eventually expands into epidemic waves. Coastal south-eastern (SE) Brazil, which has been a YFV-free region for eight decades, has reported a severe sylvatic outbreak since 2016. The virus spread from the north toward the south of the Rio de Janeiro (RJ) state, causing 307 human cases with 105 deaths during the 2016-2017 and 2017-2018 transmission seasons. It is unclear, however, whether the YFV would persist in the coastal Atlantic Forest of RJ during subsequent transmission seasons. OBJECTIVES To conduct a real-time surveillance and assess the potential persistence of YFV in the coastal Atlantic Forest of RJ during the 2018-2019 transmission season. METHODS We combined epizootic surveillance with fast diagnostic and molecular, phylogenetic, and evolutionary analyses. FINDINGS Using this integrative strategy, we detected the first evidence of YFV re-emergence in the third transmission season (2018-2019) in a dying howler monkey from the central region of the RJ state. The YFV detected in 2019 has the molecular signature associated with the current SE YFV outbreak and exhibited a close phylogenetic relationship with the YFV lineage that circulated in the same Atlantic Forest fragment during the past seasons. This lineage circulated along the coastal side of the Serra do Mar mountain chain, and its evolution seems to be mainly driven by genetic drift. The potential bridge vector Aedes albopictus was found probing on the recently dead howler monkey in the forest edge, very close to urban areas. MAIN CONCLUSIONS Collectively, our data revealed that YFV transmission persisted at the same Atlantic Forest area for at least three consecutive transmission seasons without the need of new introductions. Our real-time surveillance strategy permitted health authorities to take preventive actions within 48 h after the detection of the sick non-human primate. The local virus persistence and the proximity of the epizootic forest to urban areas reinforces the concern with regards to the risk of re-urbanisation and seasonal re-emergence of YFV, stressing the need for continuous effective surveillance and high vaccination coverage in the SE region, particularly in RJ, an important tourist location.


Assuntos
Febre Amarela/terapia , Sistemas de Transporte de Aminoácidos , Mosquitos Vetores/patogenicidade , Alouatta , Filogeografia
6.
Parasit Vectors ; 10(1): 605, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246237

RESUMO

BACKGROUND: Alternative transmission routes have been described for Zika virus (ZIKV). Here, we assessed for the first time the venereal transmission of ZIKV between Aedes aegypti under laboratory conditions. RESULTS: Orally-infected mosquito females were able to transmit the virus to males venereally, and males inoculated intrathoracically were capable of infecting females during mating. The genome of venereally-transmitted virus recovered from males was identical to that of ZIKV ingested by mated females. CONCLUSION: We conclude that venereal transmission between Aedes mosquitoes might contribute to Zika virus maintenance in nature.


Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Infecções Sexualmente Transmissíveis , Infecção por Zika virus/transmissão , Zika virus/isolamento & purificação , Animais , Feminino , Masculino
7.
Acta Trop ; 176: 140-143, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28743449

RESUMO

Ae. aegypti is the main vector of dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. The transmission dynamics of these arboviruses, especially the arboviral circulation in the mosquito population during low and high transmission seasons in endemic areas are still poorly understood. We conducted an entomological survey to determine dengue infection rates in Ae. aegypti and Aedes albopictus. These collections were performed in 2012-2013 during a Rio de Janeiro epidemic, just before the introduction and spread of ZIKV and CHIKV in the city. MosquiTrap© and BG-Sentinel traps were installed in three fixed and seven itinerant neighborhoods each month over ten months. Mosquitoes were in supernatants pools tested and individually confirmed for DENV infection using RT-PCR. A total of 3053 Aedes mosquitos were captured and Ae. aegypti was much more frequent (92.9%) than Ae. albopictus (6.8%). Ae. aegypti females accounted for 71.8% of captured mosquitoes by MosquitTrap© and were the only species found naturally infected with DENV (infection rate=0.81%). Only one Ae. aegypti male, collected by BG-sentinel, was also tested positive for DENV. The peak of DENV-positive mosquitoes coincided the season of the highest incidence of human cases. The most common serotypes detected in mosquitoes were DENV-3 (24%) and DENV-1 (24%), followed by DENV-4 (20%), DENV-2 (8%) and DENV-1 plus DENV4 (4%), while 95% of laboratory-confirmed human infections in the period were due to DENV-4. These contrasting results suggest silent maintenance of DENV serotypes during the epidemics, reinforcing the importance of entomological and viral surveillance in endemic areas.


Assuntos
Aedes/virologia , Dengue/veterinária , Insetos Vetores/virologia , Animais , Brasil/epidemiologia , Cidades , Vírus da Dengue , Feminino , Humanos , Masculino , Estações do Ano , Sorogrupo
8.
Virol J ; 10: 3, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23282086

RESUMO

BACKGROUND: Dengue, a mosquito-borne viral infection caused by one of the four dengue virus (DENV) serotypes (DENV-1 to 4), replicate alternately on the mosquito vector and human host and are responsible for infections throughout tropical and subtropical regions of the world. In Brazil, the disease has become a major public health problem and the introduction of DENV-3 in 2000 in Rio de Janeiro (RJ) was associated with severe dengue epidemics. The potential emergence of strains associated with severe disease highlights the need for the surveillance of DENV in human host and vectors. METHODS: Aiming to contribute for DENV phylogenetic and vector-virus-human host studies, we sequenced the entire genome of one DENV-3 isolated from naturally infected Aedes aegypti from RJ in 2001 and characterized the 3' UTR from strains isolated from mosquitoes and humans. Mosquitoes were pooled and submitted to virus isolation in Ae. albopictus C6/36 cells and the infecting serotype was identified by immunofluorescence using type-specific monoclonal antibody. Sequence analysis was performed using BioEdit software, the multiple alignments were performed using CLUSTAL W and the phylogenetic analysis by MEGA 5, using the Neighbor-joining method. Secondary structure prediction was performed by using the MFOLD program. RESULTS: Exclusive substitutions and a substitution leading to a stop codon on the NS5 gene were observed in the DENV-3 isolated from a naturally infected Ae. aegypti and fully sequenced. As an 8- nucleotides deletion was observed within the 11- nucleotides (nts) insertion on the variable region (VR) from the 3'UTR in this isolate, we further sequenced other DENV-3 from both mosquitoes and humans. The majority of DENV-3 from RJ analyzed were characterized by the 11-nts insertion in the VR of the 3'UTR, despite the observation of strains carrying the 8-nts deletion. The latter presented similar secondary structures, however not all strains presenting the 11-nts insertion were similar in the predicted secondary structure. CONCLUSIONS: The phylogeny based on the analysis of the complete genome and 3'UTR characterized the DENV-3 isolated from both vector and human host as belonging to Genotype III (GIII), despite the differences observed on the 3' UTR. Further studies are needed to address the role of those mutations in the transmission of the different viral populations and vector competence.


Assuntos
Regiões 3' não Traduzidas , Aedes/virologia , Vírus da Dengue/genética , Dengue/virologia , Variação Genética , Proteínas não Estruturais Virais/genética , Animais , Sequência de Bases , Brasil/epidemiologia , Códon de Terminação/genética , Dengue/epidemiologia , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Sorotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...