Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 32(7): e12885, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32671919

RESUMO

Prolactin (PRL) is a hormone principally secreted by lactotrophs of the anterior pituitary gland. Although the synthesis and exocytosis of this hormone are mainly under the regulation of hypothalamic dopamine (DA), the possibility that the anterior pituitary synthesises this catecholamine remains unclear. The present study aimed to determine if the anterior pituitary produces DA from the precursor l-3,4-dihydroxyphenylalanine (l-dopa). Accordingly, we investigated the expression of aromatic l-amino acid decarboxylase (AADC) enzyme and the transporter vesicular monoamine transporter 2 (VMAT2) in the anterior pituitary, AtT20 and GH3 cells by immunofluorescence and western blotting. Moreover, we investigated the production of DA from l-dopa and its release in vitro. Then, we explored the effects of l-dopa with respect to the secretion of PRL from anterior pituitary fragments. We observed that the anterior pituitary, AtT20 and GH3 cells express both AADC and VMAT2. Next, we detected an increase in DA content after anterior pituitary fragments were incubated with l-dopa. Also, the presence of l-dopa increased DA levels in incubation media and reduced PRL secretion. Likewise, the content of cellular DA increased after AtT20 cells were incubated with l-dopa. In addition, l-dopa reduced corticotrophin-releasing hormone-stimulated adrenocorticotrophic hormone release from these cells after AADC activity was inhibited by NSD-1015. Moreover, DA formation from l-dopa increased apoptosis and decreased proliferation. However, in the presence of NSD-1015, l-dopa decreased apoptosis and increased proliferation rates. These results suggest that the anterior pituitary synthesises DA from l-dopa by AADC and this catecholamine can be released from this gland contributing to the control of PRL secretion. In addition, our results suggest that l-dopa exerts direct actions independently from its metabolisation to DA.


Assuntos
Dopamina/biossíntese , Levodopa/metabolismo , Adeno-Hipófise/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Células Cultivadas , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Células PC12 , Prolactina/metabolismo , Ratos , Ratos Wistar
2.
Neuroendocrinology ; 108(2): 84-97, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30376668

RESUMO

Prolactinomas are increasingly viewed as a "problem of signal transduction." Consequently, the identification of factors and signaling pathways that control lactotrope cell turnover is needed in order to encourage new therapeutic developments. We have previously shown that prolactin (PRL) acts as a proapoptotic and antiproliferative factor on lactotropes, maintaining anterior pituitary cell homeostasis, which contrasts with the classical antiapoptotic and/or proliferative actions exerted by PRL in most other target tissues. We aimed to investigate the PRLR-triggered signaling pathways mediating these nonclassical effects of PRL in the pituitary. Our results suggest that (i) the PRLR/Jak2/STAT5 pathway is constitutively active in GH3 cells and contributes to PRL-induced apoptosis by increasing the Bax/Bcl-2 ratio, (ii) PRL inhibits ERK1/2 and Akt phosphorylation, thereby contributing to its proapoptotic effect, and (iii) the PI3K/Akt pathway participates in the PRL-mediated control of lactotrope proliferation. We hypothesize that the alteration of PRL actions in lactotrope homeostasis due to the dysregulation of any of the mechanisms of actions described above may contribute to the pathogenesis of prolactinomas.


Assuntos
Apoptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Lactotrofos/metabolismo , Prolactina/farmacologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/fisiologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Lactotrofos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Receptores da Prolactina/antagonistas & inibidores , Receptores da Prolactina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...