Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 290: 154119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37879220

RESUMO

The appropriate timing of organ abscission determines plant growth, development, reproductive success, and yield in relation to crop species. Among these, yellow lupine is an example of a crop species that loses many fully developed flowers, which limits the formation of pods with high-protein seeds and affects its economic value. Lupine flower abscission, similarly to the separation of other organs, depends on a complex regulatory network functioning in the cells of the abscission zone (AZ). In the present study, genetic, biochemical, and cellular methods were used to highlight the complexity of the interactions among strong hormonal stimulators of abscission, including abscisic acid (ABA), ethylene, and jasmonates (JAs) precisely in the AZ cells, with all results supporting that the JA-related pathway has an important role in the phytohormonal cross-talk leading to flower abscission in yellow lupine. Based on obtained results, we conclude that ABA and ET have positive influence on JAs biosynthesis and signaling pathway in time-dependent manner. Both phytohormones changes lipoxygenase (LOX) gene expression, affects LOX protein abundance, and JA accumulation in AZ cells. We have also shown that the signaling pathway of JA is highly sensitive to ABA and ET, given the accumulation of COI1 receptor and MYC2 transcription factor in response to these phytohormones. The results presented provide novel information about the JAs-dependent separation of organs and provide insight and details about the phytohormone-related mechanisms of lupine flower abscission.


Assuntos
Ácido Abscísico , Lupinus , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Lupinus/metabolismo , Etilenos/metabolismo , Flores , Regulação da Expressão Gênica de Plantas
2.
Plants (Basel) ; 12(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299191

RESUMO

The common bean has received attention as a model plant for legume studies, but little information is available about the morphology of its pods and the relation of this morphology to the loss of seed dispersal and/or the pod string, which are key agronomic traits of legume domestication. Dehiscence is related to the pod morphology and anatomy of pod tissues because of the weakening of the dorsal and ventral dehiscence zones and the tensions of the pod walls. These tensions are produced by the differential mechanical properties of lignified and non-lignified tissues and changes in turgor associated with fruit maturation. In this research, we histologically studied the dehiscence zone of the ventral and dorsal sutures of the pod in two contrasting genotypes for the dehiscence and string, by comparing different histochemical methods with autofluorescence. We found that the secondary cell wall modifications of the ventral suture of the pod were clearly different between the dehiscence-susceptible and stringy PHA1037 and the dehiscence-resistant and stringless PHA0595 genotypes. The susceptible genotype had cells of bundle caps arranged in a more easily breakable bowtie knot shape. The resistant genotype had a larger vascular bundle area and larger fibre cap cells (FCCs), and due to their thickness, the external valve margin cells were significantly stronger than those from PHA1037. Our findings suggest that the FCC area, and the cell arrangement in the bundle cap, might be partial structures involved in the pod dehiscence of the common bean. The autofluorescence pattern at the ventral suture allowed us to quickly identify the dehiscent phenotype and gain a better understanding of cell wall tissue modifications that took place along the bean's evolution, which had an impact on crop improvement. We report a simple autofluorescence protocol to reliably identify secondary cell wall organization and its relationship to the dehiscence and string in the common bean.

4.
Plant Sci ; 316: 111173, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151456

RESUMO

Yellow lupine is an economically important crop. This species has been used as a great model for abscission processes for several years due to extreme flower abortion, which takes place in the abscission zone (AZ). AZ activation involves modifications of cell walls, membranes, and cellular structure. In this paper, we applied physiological, molecular, biochemical, and instrumental methods to explore lipid-associated changes and the possible involvement of lipid-derived phytohormones - jasmonates (JAs) - in flower AZ activation. Our comprehensive analyses revealed that natural abscission is accompanied by the upregulation of peroxidase, which reflects a disruption of redox balance and/or lipids peroxidation in AZ cell membranes. Redox imbalance was confirmed by appearance of malondialdehyde. Lipid-related processes involved the specific localization and increased level and activity of lipase and LOX, enzymes associated with cell membrane rupture, and JA biosynthesis. Lipid-hydrolyzing phospholipase D, implicated previously in abscission, is also found in naturally active AZs. Observed changes are accompanied by the accumulation of jasmonates, both free jasmonic acid and its methyl ester. The JA derivative exhibited higher biological activity than the nonconjugated form. Overall, our study shed new light on the lipid and phytohormonal regulation of AZ functioning supporting a role of JAs during abscission-associated events.


Assuntos
Lupinus , Aceleração , Ciclopentanos , Flores , Regulação da Expressão Gênica de Plantas , Oxilipinas
5.
Sci Rep ; 10(1): 15762, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978460

RESUMO

Alternate bearing (AB) refers to the tendency of trees to have an irregular crop load from 1 year (ON) to the next year (OFF). Despite its economic importance, it is not fully understood how gene networks and their related metabolic pathways may influence the irregular bearing in olive trees. To unravel molecular mechanisms of this phenomenon in olive (cv. Conservalia), the whole transcriptome of leaves and buds from ON and OFF-trees was sequenced using Illumina next generation sequencing approach. The results indicated that expressed transcripts were involved in metabolism of carbohydrates, polyamins, phytohormones and polyphenol oxidase (POD) related to antioxidant system. Expression of POD was increased in leaf samples of ON- versus OFF-trees. The expression pattern of the greater number of genes was changed more in buds than in leaves. Up-regulation of gene homologues to the majority of enzymes that were involved in photorespiration metabolism pathway in buds of ON-trees was remarkable that may support the hypotheses of an increase in photorespiratory metabolism in these samples. The results indicated changes in expression pattern of homologous to those taking part of abscisic acid and cytokinin synthesis which are connected to photorespiration. Our data did not confirm expression of homologue (s) to those of chlorogenic acid metabolism, which has been addressed earlier that have a probable role in biennial bearing in olive. Current findings provide new candidate genes for further functional analysis, gene cloning and exploring of molecular basses of AB in olive.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , Olea/genética , Folhas de Planta/genética , Árvores/genética , Flores/crescimento & desenvolvimento , Olea/crescimento & desenvolvimento , Olea/metabolismo , RNA-Seq , Árvores/crescimento & desenvolvimento
6.
Free Radic Biol Med ; 144: 192-202, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31199965

RESUMO

Nitrated phospholipids have been recently identified in biological systems and showed to display anti-oxidant and anti-inflammatory potential in models of inflammation in vitro. Here, we have explored the effects of nitrated 1-palmitoyl-2-oleyl-phosphatidyl choline (NO2-POPC) in cellular models. We have observed that NO2-POPC, but not POPC, induces cellular changes consisting in cytoskeletal rearrangement and cell shrinking, and ultimately, loss of cell adhesion or impaired cell attachment. NO2-POPC releases NO in vitro and induces accumulation of NO in cells. Nevertheless, the effects of NO2-POPC are not superimposable with those of NO donors, which points to distinctive mechanisms of action. Notably, they show a stronger parallelism, although not complete overlap, with the effects of nitrated fatty acids. Interestingly, redistribution of vimentin by NO2-POPC is attenuated in a C328S mutant, thus indicating that this residue may be a target for direct or indirect modification in NO2-POPC-treated cells. Additionally, NO2-POPC interacts with several typical lipoxidation targets in vitro, including vimentin and PPARγ constructs, likely through cysteine residues. Therefore, nitrated phospholipids emerge as potential novel electrophilic lipid mediators with selective actions.


Assuntos
Citoesqueleto/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Óxido Nítrico/química , Fosfatidilcolinas/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Células Endócrinas/efeitos dos fármacos , Células Endócrinas/metabolismo , Células Endócrinas/ultraestrutura , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peroxidação de Lipídeos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Nitratos/química , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Fosfatidilcolinas/química , Vimentina/genética , Vimentina/metabolismo , Proteína Vermelha Fluorescente
7.
Protoplasma ; 256(5): 1173-1183, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30993471

RESUMO

The phenomenon of excessive flower abscission in yellow lupine is a process of substantial interest to the agricultural industries, because it substantially affects the yield. The aim of this work was to provide an analysis of the changes taking place precisely in the abscission zone (AZ) during early stages of flower separation. We put particular emphasis on mRNA accumulation of BOP (BLADE ON PETIOLE) gene encoding a transcriptional factor so far considered to be essential for AZ formation. Our results show that the AZ displays a particular transcriptional network active in the specific stages of its function, as reflected by the expression profile of LlBOP. Noteworthy, spatio-temporal LlBOP transcript accumulation in the elements of pedicel vascular tissue reveals divergent regulatory mechanism of its activity. We have also found that AZ cells accumulate reactive oxidative species following abscission and what is more, become active due to the increasing amount of uridine-rich small nuclear RNA, accompanied by poly(A) mRNA intensive synthesis. Our paper is a novel report for BOP involvement in the AZ functioning in relation to the whole transcriptional activity of AZ and overall discussed regarding BOP role as a potential mobile key regulator of abscission.


Assuntos
Flores/química , Regulação da Expressão Gênica de Plantas/genética , Lupinus/química , Espécies Reativas de Oxigênio
8.
Plant J ; 96(2): 300-315, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30003619

RESUMO

Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.


Assuntos
Complexo Mediador/metabolismo , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gametogênese Vegetal/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Complexo Mediador/genética , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia
9.
Data Brief ; 15: 474-477, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29062872

RESUMO

The data presented here are related to the research article entitled "Generation of nitric oxide by olive (Olea europaea L.) pollen during in vitro germination and assessment of the S-nitroso- and nitro-proteomes by computational predictive methods" doi:10.1016/j.niox.2017.06.005 (Jimenez-Quesada et al., 2017) [1]. Predicted cysteine S-nitrosylation and Tyr-nitration sites in proteins derived from a de novo assembled and annotated pollen transcriptome from olive tree (Olea europaea L.) were obtained after using well-established predictive tools in silico. Predictions were performed using both default and highly restrictive thresholds. Numerous gene products identified with these characteristics are listed here. An experimental validation of the data, consisting in nano-LC-MS (Liquid Chromatography-Mass Spectrometry) determination of olive pollen proteins after immunoprecipitation with antibodies to anti-S-nitrosoCys and anti-3-NT (NitroTyrosine) allowed identification of numerous proteins subjected to these two post-translational modifications, which are listed here together with information regarding their cross-presence among the predictions.

10.
J Plant Physiol ; 206: 49-58, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689739

RESUMO

Flower abscission is a highly regulated developmental process activated in response to exogenous (e.g. changing environmental conditions) and endogenous stimuli (e.g. phytohormones). Ethylene (ET) and abscisic acid (ABA) are very effective stimulators of flower abortion in Lupinus luteus, which is a widely cultivated species in Poland, Australia and Mediterranean countries. In this paper, we show that artificial activation of abscission by flower removal caused an accumulation of ABA in the abscission zone (AZ). Moreover, the blocking of that phytohormone's biosynthesis by NDGA (nordihydroguaiaretic acid) decreased the number of abscised flowers. However, the application of NBD - an inhibitor of ET action - reversed the stimulatory effect of ABA on flower abscission, indicating that ABA itself is not sufficient to turn on the organ separation. Our analysis revealed that exogenous ABA significantly accelerated the transcriptional activity of the ET biosynthesis genes ACC synthase (LlACS) and oxidase (LlACO), and moreover, strongly increased the level of 1-aminocyclopropane-1-carboxylic acid (ACC) - ET precursor, which was specifically localized within AZ cells. We cannot exclude the possibility that ABA mediates flower abscission processes by enhancing the ET biosynthesis rate. The findings of our study will contribute to the overall basic knowledge on the phytohormone-regulated generative organs abscission in L. luteus.


Assuntos
Ácido Abscísico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Etilenos/biossíntese , Flores/fisiologia , Lupinus/fisiologia , Aminoácidos Cíclicos/metabolismo , Vias Biossintéticas/genética , Flores/efeitos dos fármacos , Imunofluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lupinus/efeitos dos fármacos , Lupinus/genética , Masoprocol/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
Electrophoresis ; 35(18): 2681-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24888349

RESUMO

Standardization of protein extracts for clinical purposes represents an important task in order to maintain adequate reactivity, presence of the relevant allergens, and safety among other factors. The main objective of this work was to explore the potential use of a chip-based automated CE system commercially available to analyze several of the most common forms of allergenic extracts from olive pollen used in allergy clinics. These include experimental extracts prepared from olive pollens, in-house reference extracts, extracts designed for skin prick test assays, and a panel of vaccine variants aimed to specific immunotherapy. As a major conclusion of the study, chip-based CE allowed in all cases to determine accurate protein profiles with different degrees of sensitivity, where several allergens (particularly the major olive pollen allergen Ole e 1) were easily recognized. Moreover, several purified allergens were also analyzed by this method, and proposed as specific standards for different purposes. In the present condition, the method can only provide the protein profile of the extracts with respect to a preestablished standard extract, but not allergen identification. However, these and other future developments and applications are discussed.


Assuntos
Eletroforese Capilar/métodos , Olea/química , Extratos Vegetais/química , Pólen/química
12.
Plant Signal Behav ; 9(4): e28274, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24589550

RESUMO

During sexual reproduction, pollen performance is greatly influenced by the female tissues. The stigma exudate, i.e., the extracellular secretion that covers the stigma outermost surface, has been usually regarded as a reservoir of water, secondary metabolites, cell wall precursors and compounds that serve as energy supply for rapid pollen tube growth. In an attempt to identify the proteins present in the stigma secretome, we performed a large-scale analysis in two species (Lilium longiflorum and Olea europaea) following a proteomic-based approach. The resulting data strongly suggest that the stigma exudate is not a mere storage site but also a biochemically active environment with a markedly catabolic nature. Thus, this secretion may modulate early pollen tube growth and contribute to the senescence of stigma after pollination. In addition, a putative cross-talk between genetic programs that regulate stress/defense and pollination responses in the stigma is also suggested. The stigma exudate might also functionally diverge between species on the basis on their ecology and the biochemical, morphological and anatomical features of their stigmas. Unexpectedly, we identified in both exudates some intracellular proteins, suggesting that a mechanism other than the canonical ER-Golgi exocytic pathway may exist in the stigma and contribute to exudate secretion.


Assuntos
Flores/fisiologia , Lilium/fisiologia , Olea/fisiologia , Exsudatos de Plantas/química , Proteínas de Plantas/análise , Exsudatos de Plantas/fisiologia , Pólen/fisiologia , Proteômica
13.
Methods Mol Biol ; 1072: 85-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24136516

RESUMO

Plant tissues contain high levels of nonprotein contaminants such as lipids, phenolic compounds, and polysaccharides among others, which interfere with protein extraction and electrophoretic separation. Preparation of good-quality protein extracts is a critical issue for successful electrophoretic analysis. Here, we describe a three-step method for protein extraction from lipid-rich plant tissues, which is suitable for both 1-D and 2-D electrophoresis and is compatible with downstream applications. The protocol includes prefractionation, filtration, and TCA/acetone precipitation steps prior to protein resolubilization.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Lipídeos/química , Especificidade de Órgãos , Proteínas de Plantas/isolamento & purificação , Precipitação Química , Filtração , Olea/metabolismo , Pólen/metabolismo , Solubilidade , Suspensões
14.
J Exp Bot ; 64(18): 5695-705, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24151302

RESUMO

Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma.


Assuntos
Flores/química , Lilium/química , Olea/química , Exsudatos de Plantas/química , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Flores/metabolismo , Lilium/metabolismo , Olea/metabolismo , Proteínas de Plantas/análise , Tubo Polínico/crescimento & desenvolvimento , Polinização , Polissacarídeos/metabolismo , Proteômica/métodos
15.
Iran J Allergy Asthma Immunol ; 12(1): 18-28, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23454775

RESUMO

Molecular evidence on the heterogeneity present in the Ole e 1 allergen of the olive pollen is emerging. Such polymorphism is dependent on the cultivar origin of pollen, which also determines wide differences in the expression of this protein. Determination of biochemical and molecular characteristics of Ole e 1 pollen allergen in two Iranian olive cultivars, namely 'Rowghani' and 'Zard' is necessary to assess their allergenicity potential. SDS-PAGE and immunoblotting analysis of pollen extracts showed that both cultivars present high and low expression of Ole e 1, respectively. These protein levels correlated with similarly different levels of transcripts, as determined by RT-PCR. Two-dimensional protein profiles also showed conspicuous differences in the distribution and the level of expression of those spots reacting to an anti-Ole e 1 antibody. Bioinformatic analysis of four Ole e 1 sequences corresponding to 'Rowghani' and two sequences for 'Zard', showed numerous heterogeneities when compared with those Ole e 1 and Ole e 1-like sequences present in databases. Nucleotide substitutions resulted in many cases in changes over the predicted amino acid sequences. A cladistic analysis of the sequences showed Iranian entries in a central position between West-European sequences, and Ole e 1-like sequences from other Oleaceae species. Moreover, amino acid changes affected key epitopes of the protein involved in the recognition of the protein by the human immune system. Putative implications of polymorphism in both the biological role and the allergic reactivity of Ole e 1 are discussed.


Assuntos
Alérgenos/genética , Antígenos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Olea/genética , Proteínas de Plantas/genética , Pólen/genética , Polimorfismo Genético , Alérgenos/classificação , Alérgenos/imunologia , Sequência de Aminoácidos , Anticorpos/química , Antígenos de Plantas/classificação , Antígenos de Plantas/imunologia , Sequência de Bases , Western Blotting , Humanos , Irã (Geográfico) , Dados de Sequência Molecular , Olea/classificação , Olea/imunologia , Filogenia , Extratos Vegetais/química , Proteínas de Plantas/classificação , Proteínas de Plantas/imunologia , Pólen/classificação , Pólen/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Electrophoresis ; 33(9-10): 1367-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22648803

RESUMO

Standardization of pollen protein extracts is essential in order to ensure efficiency and safety in allergy diagnosis and immunotherapy. In this paper, we have optimized a multiplex Western blotting method for the simultaneous detection of four olive pollen allergens (Ole e 1, Ole e 2, Ole e 5, and Ole e 9) on a single blot using a monoclonal antibody from mouse and three polyclonal antibodies raised in rabbit. We utilized unconjugated Fab antibody fragments for blocking rabbit primary antibodies, and fluorescence-based detection. These changes allowed an accurate and reliable comparative quantitation of these allergens among pollen-protein samples from six olive cultivars. In addition, we also tested the IgE-binding capacity of these pollen extracts by reprobing the same blot with a pool of sera from eight patients allergic to olive and detection with enzyme conjugated antibodies. A noticeable variability regarding allergen content and IgE-reactivity was found among the olive cultivars analyzed. Moreover, we could easily confirm the identity of some of the IgE-binding proteins by simply overlapping both fluorescence and chemiluminescence images. This method is versatile since it can be applied to other allergogenic plant species and extended to other allergens.


Assuntos
Alérgenos/análise , Western Blotting/métodos , Proteínas de Plantas/análise , Pólen/imunologia , Alérgenos/química , Alérgenos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Camundongos , Olea/química , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Pólen/química , Coelhos , Rinite Alérgica Sazonal/sangue , Testes Sorológicos/métodos , Testes Sorológicos/normas
17.
BMC Plant Biol ; 11: 150, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-22050767

RESUMO

BACKGROUND: The pistil is a place where multiple interactions between cells of different types, origin, and function occur. Ca(2+) is one of the key signal molecules in plants and animals. Despite the numerous studies on Ca(2+) signalling during pollen-pistil interactions, which constitute one of the main topics of plant physiology, studies on Ca(2+) dynamics in the pistil during flower formation are scarce. The purpose of this study was to analyze the contents and in situ localization of Ca(2+) at the whole-organ level in the pistil of olive during the whole course of flower development. RESULTS: The obtained results showed significant changes in Ca(2+) levels and distribution during olive pistil development. In the flower buds, the lowest levels of detectable Ca(2+) were observed. As flower development proceeded, the Ca(2+) amount in the pistil successively increased and reached the highest levels just after anther dehiscence. When the anthers and petals fell down a dramatic but not complete drop in calcium contents occurred in all pistil parts. In situ Ca(2+) localization showed a gradual accumulation on the stigma, and further expansion toward the style and the ovary after anther dehiscence. At the post-anthesis phase, the Ca(2+) signal on the stigmatic surface decreased, but in the ovary a specific accumulation of calcium was observed only in one of the four ovules. Ultrastructural localization confirmed the presence of Ca(2+) in the intracellular matrix and in the exudate secreted by stigmatic papillae. CONCLUSIONS: This is the first report to analyze calcium in the olive pistil during its development. According to our results in situ calcium localization by Fluo-3 AM injection is an effective tool to follow the pistil maturity degree and the spatial organization of calcium-dependent events of sexual reproduction occurring in developing pistil of angiosperms. The progressive increase of the Ca(2+) pool during olive pistil development shown by us reflects the degree of pistil maturity. Ca(2+) distribution at flower anthesis reflects the spatio-functional relationship of calcium with pollen-stigma interaction, progamic phase, fertilization and stigma senescence.


Assuntos
Cálcio/metabolismo , Flores/metabolismo , Olea/fisiologia , Cálcio/análise , Sinalização do Cálcio , Flores/fisiologia , Flores/ultraestrutura , Microscopia Confocal , Microscopia de Fluorescência , Olea/metabolismo , Óvulo Vegetal/metabolismo , Óvulo Vegetal/fisiologia , Reprodução
18.
Protoplasma ; 248(4): 751-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21104420

RESUMO

The structural changes occurred in differentiating olive cotyledon cells into mesophyll cells are described. Using histological and immunocytological methods as well as microscopic observations, we showed that in the cells of mature embryo, large electron-dense proteins bodies (PBs) are surrounded by numerous oil bodies (OBs). After 3 days of in vitro germination, the presence of large PBs originated by fusion of smaller PBs was observed. It was also detected a close spatial proximity between PBs and OBs, likely as a reflection of interconnected metabolic pathways. Between the 3rd and the 12th day of germination, the formation of a large vacuolar compartment takes place accompanied by a decrease in the PBs and OBs number. This was coincident with a progressive decrease in the amount of the 11S-type seed storage proteins (SSPs), showed in situ and after Western blot analysis of crude protein extracts. After 26 days germination, the cellular organization became typical for a leaf mesophyll cell, with well-differentiated chloroplasts surrounding a large central vacuole. Our results suggest that the olive cotyledon storage reserves are mobilized gradually until the seedling becomes autotrophic. Moreover, the specific accumulation of storage proteins in the intravacuolar material suggests that these structures may operate as a shuttle for SSPs and/or products of their degradation into the cytoplasm, where finally they supply amino acids for the differentiating mesophyll cells.


Assuntos
Cotilédone/citologia , Germinação , Olea/crescimento & desenvolvimento , Proteínas de Armazenamento de Sementes/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Western Blotting , Diferenciação Celular , Cloroplastos/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Imuno-Histoquímica , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Olea/citologia , Olea/metabolismo , Células Vegetais/metabolismo , Plântula/citologia , Plântula/metabolismo , Sementes/citologia , Sementes/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos , Vacúolos/metabolismo
19.
Environ Microbiol ; 9(7): 1842-50, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17564617

RESUMO

Pseudomonas putida KT2440 is unable to swarm at its common temperature of growth in the laboratory (30 degrees C) but exhibits surface motility similar to swarming patterns in other Pseudomonas between 18 degrees C and 28 degrees C. These motile cells show differentiation, consisting on elongation and the presence of surface appendages. Analysis of a collection of mutants to define the molecular determinants of this type of surface movement in KT2440 shows that while type IV pili and lipopolysaccharide O-antigen are requisites flagella are not. Although surface motility of flagellar mutants was macroscopically undistinguishable from that of the wild type, microscopy analysis revealed that these mutants move using a distinct mechanism to that of the wild-type strain. Mutants either in the siderophore pyoverdine (ppsD) or in the FpvA siderophore receptor were also unable to spread on surfaces. Motility in the ppsD strain was totally restored with pyoverdine and partially with the wild-type ppsD allele. Phenotype of the fpvA strain was not complemented by this siderophore. We discuss that iron influences surface motility and that it can be an environmental cue for swarming-like movement in P. putida. This study constitutes the first report assigning an important role to pyoverdine iron acquisition in en masse bacterial surface movement.


Assuntos
Ferro/metabolismo , Movimento/fisiologia , Oligopeptídeos/metabolismo , Pseudomonas putida/fisiologia , Sideróforos/metabolismo , Temperatura , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Flagelos/fisiologia , Genes Bacterianos/genética , Teste de Complementação Genética , Microscopia Eletrônica de Transmissão , Mutação/genética , Oligonucleotídeos , Oligopeptídeos/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Pseudomonas putida/ultraestrutura , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
20.
J Agric Food Chem ; 54(15): 5562-70, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16848546

RESUMO

The composition of seed storage proteins (SSPs) in olive endosperm and cotyledon has been analyzed. Precursor forms of these proteins are made up of individual proteins, which have been purified to homogeneity and further named p1-p5 (20.5, 21.5, 25.5, 27.5, and 30 kDa, respectively). N-terminal sequences of p1 and p2 proteins displayed relevant homology to the basic subunit of the 11S family of plant SSPs (legumins). Two-dimensional polyacrylamide gel electrophoresis experiments allowed us to verify the basic character of p1 and p2 and the acidic character of p3, p4, and p5 proteins. In addition, the putative presence of highly similar isoforms or posttranslational modifications of these polypeptides was detected. As a result, a model describing the putative association of p1-p5 proteins into subunits of alpha(acidic)/beta(basic) type has been proposed. Solubility experiments have shown that the majority of these olive seed proteins from the 11S storage protein family are extracted with aqueous alcohol and only partially with water and diluted saline solutions, therefore suggesting their similarity to prolamines. Moreover, no visible differences were found in either subunit composition or 11S proteins mass among six olive cultivars examined. This result suggests that the synthesis of storage proteins is highly conserved in this plant species. By using a rabbit antiserum raised to p1 protein, the proteins have also been immunolocalized in olive seed tissues, showing that they accumulate in conspicuous protein bodies present in both the endosperm and the cotyledon.


Assuntos
Olea/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Sementes/química , Sequência de Aminoácidos , Especificidade de Anticorpos , Eletroforese em Gel de Poliacrilamida , Soros Imunes , Immunoblotting , Microscopia Eletrônica , Proteínas de Plantas/imunologia , Sementes/ultraestrutura , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...