Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1146065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960294

RESUMO

Grapes' infection by phytopathogenic fungi may often lead to rot and impair the quality and safety of the final product. Due to the concerns associated with the extensive use of chemicals to control these fungi, including their toxicity for environment and human health, bio-based products are being highly preferred, as eco-friendlier and safer alternatives. Specifically, yeasts have shown to possess antagonistic activity against fungi, being promising for the formulation of new biocontrol products.In this work 397 wine yeasts, isolated from Portuguese wine regions, were studied for their biocontrol potential against common grapes phytopathogenic fungal genera: Aspergillus, Botrytis, Mucor and Penicillium. This set comprised strains affiliated to 32 species distributed among 20 genera. Time-course monitoring of mold growth was performed to assess the inhibitory activity resulting from either diffusible or volatile compounds produced by each yeast strain. All yeasts displayed antagonistic activity against at least one of the mold targets. Mucor was the most affected being strongly inhibited by 68% of the tested strains, followed by Botrytis (20%), Aspergillus (19%) and Penicillium (7%). More notably, the approach used allowed the detection of a wide array of yeast-induced mold response profiles encompassing, besides the decrease of mold growth, the inhibition or delay of spore germination and the complete arrest of mycelial extension, and even its stimulation at different phases. Each factor considered (taxonomic affiliation, mode of action and fungal target) as well as their interactions significantly affected the antagonistic activity of the yeast isolates. The highest inhibitions were mediated by volatile compounds. Total inhibition of Penicillium was achieved by a strain of Metschnikowia pulcherrima, while the best performing yeasts against Mucor, Aspergillus and Botrytis, belong to Lachancea thermotolerans, Hanseniaspora uvarum and Starmerella bacillaris, respectively. Notwithstanding the wide diversity of yeasts tested, only three strains were found to possess a broad spectrum of antagonistic activity, displaying strong or very strong inhibition against the four fungal targets tested. Our results confirm the potential of wine yeasts as biocontrol agents, while highlighting the need for the establishment of fit-for-purpose selection programs depending on the mold target, the timing, and the mode of application.

2.
Food Res Int ; 143: 110261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992362

RESUMO

Phenolic compounds are partially removed during fining, which may influence the organoleptic properties of beverages. Among phenolic compounds, tannins have been widely associated to the taste of beverages (namely astringency and bitterness). Furthermore, phenolic acids and anthocyanins may also influence bitterness and the latter are also responsible for beverages' color. Thus, it is necessary to perform molecular studies to better understand the effect of fining agents in the overall phenolic composition of beverages and the resulting organoleptic changes. The molecular interactions between these three classes of phenolic compounds and a yeast protein extract (YPE), designed as a new fining agent, was studied. The binding affinities were assessed by fluorescence quenching at two temperatures (21 °C and 37 °C) and in two reaction media (water and wine model solution). The size of aggregates formed was characterized by Dynamic Light Scattering and the selectivity of protein interaction was analyzed by electrophoresis. Overall, pentagalloylglucoside (tannin) showed the highest binding affinity for YPE, followed by malvidin 3-glucoside (anthocyanin), p-coumaric acid (phenolic acid) and gallic acid (phenolic acid). The studied temperatures and solvents affected the interaction affinities as well as the aggregates' size. Binding selectivity of proteins from YPE was not found. These results open new perspectives to control the fining process by using the YPE as a fining agent taking into account the further effect in the organoleptic properties of beverages.


Assuntos
Antocianinas , Vinho , Antocianinas/análise , Proteínas Fúngicas , Fenóis/análise , Taninos/análise , Vinho/análise
4.
Front Chem ; 3: 20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25853122

RESUMO

Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76-89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...