Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 609(7929): 911-914, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171381

RESUMO

The central regions of galaxy clusters are permeated by magnetic fields and filled with relativistic electrons1. When clusters merge, the magnetic fields are amplified and relativistic electrons are re-accelerated by turbulence in the intracluster medium2,3. These electrons reach energies of 1-10 GeV and, in the presence of magnetic fields, produce diffuse radio halos4 that typically cover an area of around 1 Mpc2. Here we report observations of four clusters whose radio halos are embedded in much more extended, diffuse radio emission, filling a volume 30 times larger than that of radio halos. The emissivity in these larger features is about 20 times lower than the emissivity in radio halos. We conclude that relativistic electrons and magnetic fields extend far beyond radio halos, and that the physical conditions in the outer regions of the clusters are quite different from those in the radio halos.

2.
Science ; 364(6444): 981-984, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31171695

RESUMO

Galaxy clusters are the most massive gravitationally bound structures in the Universe. They grow by accreting smaller structures in a merging process that produces shocks and turbulence in the intracluster gas. We observed a ridge of radio emission connecting the merging galaxy clusters Abell 0399 and Abell 0401 with the Low-Frequency Array (LOFAR) telescope network at 140 megahertz. This emission requires a population of relativistic electrons and a magnetic field located in a filament between the two galaxy clusters. We performed simulations to show that a volume-filling distribution of weak shocks may reaccelerate a preexisting population of relativistic particles, producing emission at radio wavelengths that illuminates the magnetic ridge.

4.
Nature ; 531(7592): 70-3, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26935696

RESUMO

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

5.
Science ; 339(6118): 436-9, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23349288

RESUMO

Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...