Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Clin Chem Lab Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38747410

RESUMO

The development of microRNA (miRNA)-based biomarkers has gained significant attention due to their potential diagnostic, prognostic and therapeutic applications. However, the reproducibility of miRNA biomarker research faces unique challenges, primarily due to the influence of pre-analytical and analytical factors. The absence of standardized procedures contributes to inconsistencies across studies, alongside challenges in reference gene selection, data analysis methods and miRNA profiling platforms. Inter-laboratory comparison trials, or ring trials, offer a strategic approach to address technical and biological variability in miRNA biomarker studies. These trials promote standardization, identify sources of variability and strengthen the correlation between miRNAs and clinical outcomes. Despite their underutilization in miRNA biomarker research, ring trials represent a valuable tool for enhancing reproducibility and expediting the translation of miRNA-based biomarkers into clinical applications.

2.
Crit Care Med ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597721

RESUMO

OBJECTIVES: To investigate the sleep and circadian health of critical survivors 12 months after hospital discharge and to evaluate a possible effect of the severity of the disease within this context. DESIGN: Observational, prospective study. SETTING: Single-center study. PATIENTS: Two hundred sixty patients admitted to the ICU due to severe acute respiratory syndrome coronavirus 2 infection. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The cohort was composed of 260 patients (69.2% males), with a median (quartile 1-quartile 3) age of 61.5 years (52.0-67.0 yr). The median length of ICU stay was 11.0 days (6.00-21.8 d), where 56.2% of the patients required invasive mechanical ventilation (IMV). The Pittsburgh Sleep Quality Index (PSQI) revealed that 43.1% of the cohort presented poor sleep quality 12 months after hospital discharge. Actigraphy data indicated an influence of the disease severity on the fragmentation of the circadian rest-activity rhythm at the 3- and 6-month follow-ups, which was no longer significant in the long term. Still, the length of the ICU stay and the duration of IMV predicted a higher fragmentation of the rhythm at the 12-month follow-up with effect sizes (95% CI) of 0.248 (0.078-0.418) and 0.182 (0.005-0.359), respectively. Relevant associations between the PSQI and the Hospital Anxiety and Depression Scale (rho = 0.55, anxiety; rho = 0.5, depression) as well as between the fragmentation of the rhythm and the diffusing lung capacity for carbon monoxide (rho = -0.35) were observed at this time point. CONCLUSIONS: Our findings reveal a great prevalence of critical survivors presenting poor sleep quality 12 months after hospital discharge. Actigraphy data indicated the persistence of circadian alterations and a possible impact of the disease severity on the fragmentation of the circadian rest-activity rhythm, which was attenuated at the 12-month follow-up. This altogether highlights the relevance of considering the sleep and circadian health of critical survivors in the long term.

3.
Int J Biol Macromol ; 269(Pt 2): 131926, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688344

RESUMO

Circulating cell-free microRNAs (miRNAs) are promising biomarkers for medical decision-making. Suitable endogenous controls are essential to ensure reproducibility. We aimed to identify and validate endogenous reference miRNAs for qPCR data normalization in samples from SARS-CoV-2-infected hospitalized patients. We used plasma samples (n = 170) from COVID-19 patients collected at hospital admission (COVID-Ponent project, www.clinicaltrials.gov/NCT04824677). First, 179 miRNAs were profiled using RT-qPCR. After stability assessment, candidates were validated using the same methodology. miRNA stability was analyzed using the geNorm, NormFinder and BestKeeper algorithms. Stability was further evaluated using an RNA-seq dataset derived from COVID-19 hospitalized patients, along with plasma samples from patients with critical COVID-19 profiled using RT-qPCR. In the screening phase, after strict control of expression levels, stability assessment selected eleven candidates (miR-17-5p, miR-20a-5p, miR-30e-5p, miR-106a-5p, miR-151a-5p, miR-185-5p, miR-191-5p, miR-423-3p, miR-425-5p, miR-484 and miR-625-5p). In the validation phase, all algorithms identified miR-106a-5p and miR-484 as top endogenous controls. No association was observed between these miRNAs and clinical or sociodemographic characteristics. Both miRNAs were stably detected and showed low variability in the additional analyses. In conclusion, a 2-miRNA panel composed of miR-106a-5p and miR-484 constitutes a first-line normalizer for miRNA-based biomarker development using qPCR in hospitalized patients infected with SARS-CoV-2.

4.
Crit Care ; 28(1): 91, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515193

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster. METHODS: Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3. RESULTS: Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3. CONCLUSIONS: During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Análise por Conglomerados , Unidades de Terapia Intensiva , Estudos Prospectivos , Síndrome do Desconforto Respiratório/terapia , Estudos Retrospectivos
5.
Nutrients ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474819

RESUMO

Obesity is one of the main causes of chronic kidney disease; however, the precise molecular mechanisms leading to the onset of kidney injury and dysfunction in obesity-associated nephropathy remain unclear. The present study aimed to unveil the kidney microRNA (miRNA) expression profile in a model of obesity-induced kidney disease in C57BL/6J mice using next-generation sequencing (NGS) analysis. High-fat diet (HFD)-induced obesity led to notable structural alterations in tubular and glomerular regions of the kidney, increased renal expression of proinflammatory and profibrotic genes, as well as an elevated renal expression of genes involved in cellular lipid metabolism. The miRNA sequencing analysis identified a set of nine miRNAs differentially expressed in the kidney upon HFD feeding, with miR-5099, miR-551b-3p, miR-223-3p, miR-146a-3p and miR-21a-3p showing the most significant differential expression between standard diet (STD) and HFD mice. A validation analysis showed that the expression levels of miR-5099, miR-551b-3p and miR-146a-3p were consistent with NGS results, while Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses revealed that these three validated miRNAs modulated target genes involved in metabolic and adipocytokine pathways, fatty acid and lipid metabolism, and inflammatory, senescence and profibrotic pathways. Our results suggest that differentially expressed miRNAs play pivotal roles in the intricate pathophysiology of obesity-associated kidney disease and could potentially create novel treatment strategies to counteract the deleterious effects of obesity on kidney function.


Assuntos
MicroRNAs , Insuficiência Renal Crônica , Camundongos , Animais , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , MicroRNAs/metabolismo , Insuficiência Renal Crônica/complicações
6.
Mol Ther Nucleic Acids ; 35(1): 102118, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38314095

RESUMO

Elucidating the pathobiological mechanisms underlying post-acute pulmonary sequelae following SARS-CoV-2 infection is essential for early interventions and patient stratification. Here, we investigated the potential of microRNAs (miRNAs) as theranostic agents for pulmoprotection in critical illness survivors. Multicenter study including 172 ICU survivors. Diffusion impairment was defined as a lung-diffusing capacity for carbon monoxide (DLCO) <80% within 12 months postdischarge. A disease-associated 16-miRNA panel was quantified in plasma samples collected at ICU admission. Bioinformatic analyses were conducted using KEGG, Reactome, GTEx, and Drug-Gene Interaction databases. The results were validated using an external RNA-seq dataset. A 3-miRNA signature linked to diffusion impairment (miR-27a-3p, miR-93-5p, and miR-199a-5p) was identified using random forest. Levels of miR-93-5p and miR-199a-5p were independently associated with the outcome, improving patient classification provided by the electronic health record. The experimentally validated targets of these miRNAs exhibited enrichment across diverse pathways, with telomere length quantification in an additional set of samples (n = 83) supporting the role of cell senescence in sequelae. Analysis of an external dataset refined the pathobiological fingerprint of pulmonary sequelae. Gene-drug interaction analysis revealed four FDA-approved drugs. Overall, this study advances our understanding of lung recovery in postacute respiratory infections, highlighting the potential of miRNAs and their targets for pulmoprotection.

7.
Br J Pharmacol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359818

RESUMO

BACKGROUND AND PURPOSE: The post-acute sequelae of SARS-CoV-2 infection pose a significant global challenge, with nearly 50% of critical COVID-19 survivors manifesting persistent lung abnormalities. The lack of understanding about the molecular mechanisms and effective treatments hampers their management. Here, we employed microRNA (miRNA) profiling to decipher the systemic molecular underpinnings of the persistent pulmonary complications. EXPERIMENTAL APPROACH: We conducted a longitudinal investigation including 119 critical COVID-19 survivors. A comprehensive pulmonary evaluation was performed in the short-term (median = 94.0 days after hospital discharge) and long-term (median = 358 days after hospital discharge). Plasma miRNAs were quantified at the short-term evaluation using the gold-standard technique, RT-qPCR. The analyses combined machine learning feature selection techniques with bioinformatic investigations. Two additional datasets were incorporated for validation. KEY RESULTS: In the short-term, 84% of the survivors exhibited impaired lung diffusion (DLCO  < 80% of predicted). One year post-discharge, 54.4% of this patient subgroup still presented abnormal DLCO . Four feature selection methods identified two specific miRNAs, miR-9-5p and miR-486-5p, linked to persistent lung dysfunction. The downstream experimentally validated targetome included 1473 genes, with heterogeneous enriched pathways associated with inflammation, angiogenesis and cell senescence. Validation studies using RNA-sequencing and proteomic datasets emphasized the pivotal roles of cell migration and tissue repair in persistent lung dysfunction. The repositioning potential of the miRNA targets was limited. CONCLUSION AND IMPLICATIONS: Our study reveals early mechanistic pathways contributing to persistent lung dysfunction in critical COVID-19 survivors, offering a promising approach for the development of targeted disease-modifying agents.

8.
Mol Ther Nucleic Acids ; 35(1): 102085, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38192612

RESUMO

RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.

10.
Front Med (Lausanne) ; 10: 1271863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869162

RESUMO

Introduction: Long-term pulmonary dysfunction (L-TPD) is one of the most critical manifestations of long-COVID. This lung affection has been associated with disease severity during the acute phase and the presence of previous comorbidities, however, the clinical manifestations, the concomitant consequences and the molecular pathways supporting this clinical condition remain unknown. The aim of this study was to identify and characterize L-TPD in patients with long-COVID and elucidate the main pathways and long-term consequences attributed to this condition by analyzing clinical parameters and functional tests supported by machine learning and serum proteome profiling. Methods: Patients with L-TPD were classified according to the results of their computer-tomography (CT) scan and diffusing capacity of the lungs for carbon monoxide adjusted for hemoglobin (DLCOc) tests at 4 and 12-months post-infection. Results: Regarding the acute phase, our data showed that L-TPD was favored in elderly patients with hypertension or insulin resistance, supported by pathways associated with vascular inflammation and chemotaxis of phagocytes, according to computer proteomics. Then, at 4-months post-infection, clinical and functional tests revealed that L-TPD patients exhibited a restrictive lung condition, impaired aerobic capacity and reduced muscular strength. At this time point, high circulating levels of platelets and CXCL9, and an inhibited FCgamma-receptor-mediated-phagocytosis due to reduced FcγRIII (CD16) expression in CD14+ monocytes was observed in patients with L-TPD. Finally, 1-year post infection, patients with L-TPD worsened metabolic syndrome and augmented body mass index in comparison with other patient groups. Discussion: Overall, our data demonstrated that CT scan and DLCOc identified patients with L-TPD after COVID-19. This condition was associated with vascular inflammation and impair phagocytosis of virus-antibody immune complexes by reduced FcγRIII expression. In addition, we conclude that COVID-19 survivors required a personalized follow-up and adequate intervention to reduce long-term sequelae and the appearance of further metabolic diseases.

11.
J Transl Med ; 21(1): 742, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864227

RESUMO

BACKGROUND: Patients with heart failure with reduced ejection fraction (HFrEF) and central sleep apnea (CSA) are at a very high risk of fatal outcomes. OBJECTIVE: To test whether the circulating miRNome provides additional information for risk stratification on top of clinical predictors in patients with HFrEF and CSA. METHODS: The study included patients with HFrEF and CSA from the SERVE-HF trial. A three-step protocol was applied: microRNA (miRNA) screening (n = 20), technical validation (n = 60), and biological validation (n = 587). The primary outcome was either death from any cause, lifesaving cardiovascular intervention, or unplanned hospitalization for worsening of heart failure, whatever occurred first. MiRNA quantification was performed in plasma samples using miRNA sequencing and RT-qPCR. RESULTS: Circulating miR-133a-3p levels were inversely associated with the primary study outcome. Nonetheless, miR-133a-3p did not improve a previously established clinical prognostic model in terms of discrimination or reclassification. A customized regression tree model constructed using the Classification and Regression Tree (CART) algorithm identified eight patient subphenotypes with specific risk patterns based on clinical and molecular characteristics. MiR-133a-3p entered the regression tree defining the group at the lowest risk; patients with log(NT-proBNP) ≤ 6 pg/mL (miR-133a-3p levels above 1.5 arbitrary units). The overall predictive capacity of suffering the event was highly stable over the follow-up (from 0.735 to 0.767). CONCLUSIONS: The combination of clinical information, circulating miRNAs, and decision tree learning allows the identification of specific risk subphenotypes in patients with HFrEF and CSA.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Apneia do Sono Tipo Central , Disfunção Ventricular Esquerda , Humanos , Apneia do Sono Tipo Central/complicações , Biomarcadores , Volume Sistólico , MicroRNAs/genética , Árvores de Decisões
14.
Intensive Care Med ; 49(8): 934-945, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37507573

RESUMO

PURPOSE: Although the prevalence of community-acquired respiratory bacterial coinfection upon hospital admission in patients with coronavirus disease 2019 (COVID-19) has been reported to be < 5%, almost three-quarters of patients received antibiotics. We aim to investigate whether procalcitonin (PCT) or C-reactive protein (CRP) upon admission could be helpful biomarkers to identify bacterial coinfection among patients with COVID-19 pneumonia. METHODS: We carried out a multicentre, observational cohort study including consecutive COVID-19 patients admitted to 55 Spanish intensive care units (ICUs). The primary outcome was to explore whether PCT or CRP serum levels upon hospital admission could predict bacterial coinfection among patients with COVID-19 pneumonia. The secondary outcome was the evaluation of their association with mortality. We also conducted subgroups analyses in higher risk profile populations. RESULTS: Between 5 February 2020 and 21 December 2021, 4076 patients were included, 133 (3%) of whom presented bacterial coinfection. PCT and CRP had low area under curve (AUC) scores at the receiver operating characteristic (ROC) curve analysis [0.57 (95% confidence interval (CI) 0.51-0.61) and 0.6 (95% CI, 0.55-0.64), respectively], but high negative predictive values (NPV) [97.5% (95% CI 96.5-98.5) and 98.2% (95% CI 97.5-98.9) for PCT and CRP, respectively]. CRP alone was associated with bacterial coinfection (OR 2, 95% CI 1.25-3.19; p = 0.004). The overall 15, 30 and 90 days mortality had a higher trend in the bacterial coinfection group, but without significant difference. PCT ≥ 0.12 ng/mL was associated with higher 90 days mortality. CONCLUSION: Our study suggests that measurements of PCT and CRP, alone and at a single time point, are not useful for ruling in or out bacterial coinfection in viral pneumonia by COVID-19.


Assuntos
COVID-19 , Coinfecção , Humanos , Pró-Calcitonina , Proteína C-Reativa/metabolismo , Calcitonina , Coinfecção/epidemiologia , Estado Terminal , COVID-19/complicações , Biomarcadores , Curva ROC , Estudos Retrospectivos
15.
Respir Res ; 24(1): 159, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37328754

RESUMO

BACKGROUND: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos Prospectivos , Estudos Retrospectivos , COVID-19/diagnóstico , COVID-19/genética , Estado Terminal , Biomarcadores , Unidades de Terapia Intensiva
16.
PLoS One ; 18(5): e0283097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167303

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are noncoding RNAs involved in post-transcriptional genetic regulation with a proposed role in intercellular communication. miRNAs are considered promising biomarkers in ischemic heart disease. Invasive physiological evaluation allows a precise assessment of each affected coronary compartment. Although some studies have associated the expression of circulating miRNAs with invasive physiological indexes, their global relationship with coronary compartments has not been assessed. Here, we will evaluate circulating miRNAs profiles according to the coronary pattern of the vascular compartment affectation. STUDY AND DESIGN: This is an investigator-initiated, multicentre, descriptive study to be conducted at three centres in Spain (NCT05374694). The study will include one hundred consecutive patients older than 18 years with chest pain of presumed coronary cause undergoing invasive physiological evaluation, including fractional flow reserve (FFR) and index of microvascular resistance (IMR). Patients will be initially classified into four groups, according to FFR and IMR: macrovascular and microvascular affectation (FFR≤0.80 / IMR≥25), isolated macrovascular affectation (FFR≤0.80 / IMR<25), isolated microvascular affectation (FFR>0.80 / IMR ≥25) and normal coronary indexes (FFR>0.80 / IMR<25). Patients with isolated microvascular affectation or normal indexes will also undergo the acetylcholine test and may be reclassified as a fifth group in the presence of spasm. A panel of miRNAs previously associated with molecular mechanisms linked to chronic coronary syndrome will be analysed using RT-qPCR. CONCLUSIONS: The results of this study will identify miRNA profiles associated with patterns of coronary affectation and will contribute to a better understanding of the mechanistic pathways of coronary pathology.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , MicroRNAs , Humanos , Angina Pectoris , Angiografia Coronária , Vasos Coronários , Epigênese Genética , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Microcirculação/fisiologia , MicroRNAs/genética , Valor Preditivo dos Testes , Resistência Vascular/fisiologia
17.
Cardiovasc Diabetol ; 22(1): 122, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226245

RESUMO

Diabetes mellitus, a group of metabolic disorders characterized by high levels of blood glucose caused by insulin defect or impairment, is a major risk factor for cardiovascular diseases and related mortality. Patients with diabetes experience a state of chronic or intermittent hyperglycemia resulting in damage to the vasculature, leading to micro- and macro-vascular diseases. These conditions are associated with low-grade chronic inflammation and accelerated atherosclerosis. Several classes of leukocytes have been implicated in diabetic cardiovascular impairment. Although the molecular pathways through which diabetes elicits an inflammatory response have attracted significant attention, how they contribute to altering cardiovascular homeostasis is still incompletely understood. In this respect, non-coding RNAs (ncRNAs) are a still largely under-investigated class of transcripts that may play a fundamental role. This review article gathers the current knowledge on the function of ncRNAs in the crosstalk between immune and cardiovascular cells in the context of diabetic complications, highlighting the influence of biological sex in such mechanisms and exploring the potential role of ncRNAs as biomarkers and targets for treatments. The discussion closes by offering an overview of the ncRNAs involved in the increased cardiovascular risk suffered by patients with diabetes facing Sars-CoV-2 infection.


Assuntos
COVID-19 , Doenças Cardiovasculares , Sistema Cardiovascular , Diabetes Mellitus , Humanos , SARS-CoV-2 , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética
18.
Lancet Microbe ; 4(6): e431-e441, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116517

RESUMO

BACKGROUND: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. METHODS: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero (<1 N1 copies per mL), VIR-N1-Low (1-2747 N1 copies per mL), and VIR-N1-Storm (>2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. FINDINGS: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16-0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26-0·57; p<0·0001, compared with the VIR-N1-Storm group). INTERPRETATION: The presence of a so-called viral storm is associated with increased all-cause death in patients admitted to the intensive care unit with severe COVID-19. Preventing this viral storm could help to reduce poor outcomes. Viral storm could be an enrichment marker for treatment with antivirals or purification devices to remove viral components from the blood. FUNDING: Instituto de Salud Carlos III, Canadian Institutes of Health Research, Li Ka-Shing Foundation, Research Nova Scotia, and European Society of Clinical Microbiology and Infectious Diseases. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Assuntos
Injúria Renal Aguda , COVID-19 , Coinfecção , Humanos , SARS-CoV-2 , Estudos Prospectivos , Estudos de Coortes , Espanha/epidemiologia , Unidades de Terapia Intensiva , Nova Escócia
19.
Biomed Pharmacother ; 162: 114623, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37023624

RESUMO

Lipoproteins have been described as microRNAs (miRNAs) carriers. Unfortunately, the bibliography on this topic is scarce and shows a high variability between independent investigations. In addition, the miRNA profiles of the LDL and VLDL fractions have not been completely elucidated. Here, we profiled the human circulating lipoprotein-carried miRNome. Lipoprotein fractions (VLDL, LDL and HDL) were isolated from the serum of healthy subjects by ultracentrifugation and purified by size-exclusion chromatography. A panel of 179 miRNAs commonly expressed in circulation was evaluated in the lipoprotein fractions using quantitative real-time PCR (qPCR) assays. A total of 14, 4 and 24 miRNAs were stably detected in the VLDL, LDL and HDL fractions, respectively. VLDL- and HDL-miRNA signatures were highly correlated (rho 0.814), and miR-16-5p, miR-142-3p, miR-223-3p and miR-451a were among the top 5 expressed miRNAs in both fractions. miR-125a-5p, miR-335-3p and miR-1260a, were detected in all lipoprotein fractions. miR-107 and miR-221-3p were uniquely detected in the VLDL fraction. HDL showed the larger number of specifically detected miRNAs (n = 13). Enrichment in specific miRNA families and genomic clusters was observed for HDL-miRNAs. Two sequence motifs were also detected for this group of miRNAs. Functional enrichment analysis including the miRNA signatures from each lipoprotein fraction suggested a potential role in mechanistic pathways previously associated with cardiovascular disease: fibrosis, senescence, inflammation, immune response, angiogenesis, and cardiomyopathy. Collectively, our results not only support the role of lipoproteins as circulating miRNA carriers but also describe for the first time the role of VLDL as a miRNA transporter.


Assuntos
Doenças Cardiovasculares , MicroRNA Circulante , MicroRNAs , Humanos , MicroRNAs/genética , Lipoproteínas , Reação em Cadeia da Polimerase em Tempo Real
20.
Crit Rev Clin Lab Sci ; 60(2): 141-152, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36325621

RESUMO

Circulating cell-free microRNAs (miRNAs) represent a major reservoir for biomarker discovery. Unfortunately, their implementation in clinical practice is limited due to a profound lack of reproducibility. The great technical variability linked to major pre-analytical and analytical caveats makes the interpretation of circulating cell-free miRNA data challenging and leads to inconsistent findings. Additional efforts directed to standardization are fundamental. Several well-established protocols are currently used by independent groups worldwide. Nonetheless, there are some specific aspects in specimen collection and processing, sample handling, miRNA quantification, and data analysis that should be considered to ensure reproducibility of results. Here, we have addressed this challenge using an alternative approach. We have highlighted and discussed common pitfalls that negatively impact the robustness of circulating miRNA quantification and their application for clinical decision-making. Furthermore, we provide a checklist usable by investigators to facilitate and ensure the control of the whole miRNA quantification and analytical process. We expect that these recommendations improve the reproducibility of findings, and ultimately, facilitate the incorporation of circulating miRNA profiles into clinical practice as the next generation of disease biomarkers.


Assuntos
MicroRNA Circulante , MicroRNAs , Humanos , Reprodutibilidade dos Testes , Biomarcadores , MicroRNAs/genética , Tomada de Decisão Clínica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...