Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Clin EEG Neurosci ; 54(4): 379-390, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36177504

RESUMO

Parkinson's disease (PD) is a movement disorder caused by degeneration in dopaminergic neurons. During the disease course, most of PD patients develop mild cognitive impairment (PDMCI) and dementia, especially affecting frontal executive functions. In this study, we tested the hypothesis that PDMCI patients may be characterized by abnormal neurophysiological oscillatory mechanisms coupling frontal and posterior cortical areas during cognitive information processing. To test this hypothesis, event-related EEG oscillations (EROs) during counting visual target (rare) stimuli in an oddball task were recorded in healthy controls (HC; N = 51), cognitively unimpaired PD patients (N = 48), and PDMCI patients (N = 53). Hilbert transform served to estimate instantaneous phase and amplitude of EROs from delta to gamma frequency bands, while modulation index computed ERO phase-amplitude coupling (PAC) at electrode pairs. As compared to the HC and PD groups, the PDMCI group was characterized by (1) more posterior topography of the delta-theta PAC and (2) reversed delta-low frequency alpha PAC direction, ie, posterior-to-anterior rather than anterior-to-posterior. These results suggest that during cognitive demands, PDMCI patients are characterized by abnormal neurophysiological oscillatory mechanisms mainly led by delta frequencies underpinning functional connectivity from frontal to parietal cortical areas.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Eletroencefalografia/efeitos adversos , Encéfalo , Cognição/fisiologia
2.
Eur J Neurosci ; 56(10): 5853-5868, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161393

RESUMO

Attention includes three different functional components: generating and maintaining an alert state (alerting), orienting to sensory events (orienting), and resolving conflicts between alternative actions (executive control). Neuroimaging and patient studies suggest that the posterior parietal cortex (PPC) is involved in all three attention components. Transcranial magnetic stimulation (TMS) has repeatedly been applied over the PPC to study its functional role for shifts and maintenance of visuospatial attention. Most TMS-PPC studies used only detection tasks or orienting paradigms to investigate TMS-PPC effects on attention processes, neglecting the alerting and executive control components of attention. The objective of the present study was to investigate the role of PPC in all three functional components of attention: alerting, orienting, and executive control. To this end, we disrupted PPC with TMS (continuous theta-burst stimulation), to modulate subsequent performance on the Lateralized-Attention Network Test, used to assess the three attention components separately. Our results revealed hemifield-specific effects on alerting and executive control functions, but we did not find stimulation effects on orienting performance. While this field of research and associated clinical development have been predominantly focused on orienting performance, our results suggest that parietal cortex and its modulation may affect other aspects of attention as well.


Assuntos
Função Executiva , Estimulação Magnética Transcraniana , Humanos , Função Executiva/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia
3.
Neuroimage ; 263: 119650, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167270

RESUMO

The human brain has limited storage capacity often challenging the encoding and recall of a long series of multiple items. Different encoding strategies are therefore employed to optimize performance in memory processes such as chunking where particular items are 'grouped' to reduce the number of items to store artificially. Additionally, related to the position of an item within a series, there is a tendency to remember the first and last items on the list better than the middle ones, which calls the "serial position effect". Although relatively well-established in behavioral research, the neuronal mechanisms underlying such encoding strategies and memory effects remain poorly understood. Here, we used event-related EEG oscillation analyses to unravel the neuronal substrates of serial encoding strategies and effects during the behaviorally controlled execution of the digit span task. We recorded EEG in forty-four healthy young-adult participants during a backward digit span (ds) task with two difficulty levels (i.e., 3-ds and 5-ds). Participants were asked to recall the digits in reverse order after the presentation of each set. We analyzed the pattern of event-related delta and theta oscillatory power in the time-frequency domain over fronto-central and parieto-occipital areas during the item (digit) list encoding, focusing on how these oscillatory responses changed with each subsequent digit being encoded in the series. Results showed that the development of event-related delta power evoked by digits in each series matched the 'serial position curve', with higher delta power being present during the first, and especially last, digits as compared to digits presented in the middle of a set, for both difficulty levels. Event-related theta power, in contrast, rather resembled a neural correlate of a chunking pattern where, during the 5-ds encoding, a clear change in event-related theta occurred around the third/fourth positions, with decreasing power values for later digits. This suggests that different oscillatory mechanisms linked to different frequency bands may code for the different encoding strategies and effects in serial item presentation. Furthermore, recall-EEG correlations suggested that participants with higher fronto-central delta responses during digit encoding showed also higher recall scores. The here presented findings contribute to our understanding of the neural oscillatory mechanisms underlying multiple item encoding, directly informing recent efforts towards memory enhancement through targeted oscillation-based neuromodulation.


Assuntos
Encéfalo , Memória , Adulto , Humanos , Memória/fisiologia , Encéfalo/fisiologia , Rememoração Mental/fisiologia , Cognição , Eletroencefalografia
4.
Sci Rep ; 12(1): 14199, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987918

RESUMO

The coupling of gamma oscillation (~ 40+ Hz) amplitude to the phase of ongoing theta (~ 6 Hz) oscillations has been proposed to be directly relevant for memory performance. Current theories suggest that memory capacity scales with number of gamma cycles that can be fitted into the preferred phase of a theta cycle. Following this logic, transcranial alternating current stimulation (tACS) may be used to adjust theta cycles (increasing/decreasing theta frequency) to decrease or increase memory performance during stimulation. Here, we used individualized EEG-informed theta tACS to (1) experimentally "slow down" individual theta frequency (ITF), (2) evaluate cognitive after effects on a battery of memory and learning tasks, and (3) link the cognitive performance changes to tACS-induced effects on theta-band oscillations as measured by post EEG. We found frequency- and task-specific tACS after effects demonstrating a specific enhancement in memory capacity. This tACS-induced cognitive enhancement was specific to the visual memory task performed immediately after tACS offset, and specific to the ITF-1 Hz (slowing) stimulation condition and thus following a protocol specifically designed to slow down theta frequency to enhance memory capacity. Follow-up correlation analyses in this group linked the enhanced memory performance to increased left frontal-parietal theta-band connectivity. Interestingly, resting-state theta power immediately after tACS offset revealed a theta power increase not for the ITF-1 Hz group, but only for the ITF group where the tACS frequency was 'optimal' for entrainment. These results suggest that while individually calibrated tACS at peak frequency maximally modulates resting-state oscillatory power, tACS stimulation slightly below this optimal peak theta frequency is better suited to enhance memory capacity performance. Importantly, our results further suggest that such cognitive enhancement effects can last beyond the period of stimulation and are linked to increased network connectivity, opening the door towards more clinical and applied relevance of using tACS in cognitive rehabilitation and/or neurocognitive enhancement.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Cognição/fisiologia , Eletroencefalografia , Modalidades de Fisioterapia , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Cortex ; 154: 149-166, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779382

RESUMO

Visuospatial attention can either be voluntarily directed (endogenous/top-down attention) or automatically triggered (exogenous/bottom-up attention). Recent research showed that dorsal parietal transcranial alternating current stimulation (tACS) at alpha frequency modulates the spatial attentional bias in an endogenous but not in an exogenous visuospatial attention task. Yet, the reason for this task-specificity remains unexplored. Here, we tested whether this dissociation relates to the proposed differential role of the dorsal attention network (DAN) and ventral attention network (VAN) in endogenous and exogenous attention processes respectively. To that aim, we targeted the left and right dorsal parietal node of the DAN, as well as the left and right ventral temporoparietal node of the VAN using tACS at the individual alpha frequency. Every participant completed all four stimulation conditions and a sham condition in five separate sessions. During tACS, we assessed the behavioral visuospatial attention bias via an endogenous and exogenous visuospatial attention task. Additionally, we measured offline alpha power immediately before and after tACS using electroencephalography (EEG). The behavioral data revealed an effect of tACS on the endogenous but not exogenous attention bias, with a greater leftward bias during (sham-corrected) left than right hemispheric stimulation. In line with our hypothesis, this effect was brain area-specific, i.e., present for dorsal parietal but not ventral temporoparietal tACS. However, contrary to our expectations, there was no effect of ventral temporoparietal tACS on the exogenous visuospatial attention bias. Hence, no double dissociation between the two targeted attention networks. There was no effect of either tACS condition on offline alpha power. Our behavioral data reveal that dorsal parietal but not ventral temporoparietal alpha oscillations steer endogenous visuospatial attention. This brain-area specific tACS effect matches the previously proposed dissociation between the DAN and VAN and, by showing that the spatial attention bias effect does not generalize to any lateral posterior tACS montage, renders lateral cutaneous and retinal effects for the spatial attention bias in the dorsal parietal condition unlikely. Yet the absence of tACS effects on the exogenous attention task suggests that ventral temporoparietal alpha oscillations are not functionally relevant for exogenous visuospatial attention. We discuss the potential implications of this finding in the context of an emerging theory on the role of the ventral temporoparietal node.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Encéfalo , Eletroencefalografia , Humanos
6.
Front Hum Neurosci ; 16: 838187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754763

RESUMO

We are in the midst of a mental health crisis with major depressive disorder being the most prevalent among mental health disorders and up to 30% of patients not responding to first-line treatments. Noninvasive Brain Stimulation (NIBS) techniques have proven to be effective in treating depression. However, there is a fundamental problem of scale. Currently, any type of NIBS treatment requires patients to repeatedly visit a clinic to receive brain stimulation by trained personnel. This is an often-insurmountable barrier to both patients and healthcare providers in terms of time and cost. In this perspective, we assess to what extent Transcranial Electrical Stimulation (TES) might be administered with remote supervision in order to address this scaling problem and enable neuroenhancement of mental resilience at home. Social, ethical, and technical challenges relating to hardware- and software-based solutions are discussed alongside the risks of stimulation under- or over-use. Solutions to provide users with a safe and transparent ongoing assessment of aptitude, tolerability, compliance, and/or misuse are proposed, including standardized training, eligibility screening, as well as compliance and side effects monitoring. Looking into the future, such neuroenhancement could be linked to prevention systems which combine home-use TES with digital sensor and mental monitoring technology to index decline in mental wellbeing and avoid relapse. Despite the described social, ethical legal, and technical challenges, the combination of remotely supervised, at-home TES setups with dedicated artificial intelligence systems could be a powerful weapon to combat the mental health crisis by bringing personalized medicine into people's homes.

7.
Front Neurol ; 13: 793253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669870

RESUMO

Transcranial Magnetic Stimulation (TMS) has widespread use in research and clinical application. For psychiatric applications, such as depression or OCD, repetitive TMS protocols (rTMS) are an established and globally applied treatment option. While promising, rTMS is not yet as common in treating neurological diseases, except for neurorehabilitation after (motor) stroke and neuropathic pain treatment. This may soon change. New clinical studies testing the potential of rTMS in various other neurological conditions appear at a rapid pace. This can prove challenging for both practitioners and clinical researchers. Although most of these neurological applications have not yet received the same level of scientific/empirical scrutiny as motor stroke and neuropathic pain, the results are encouraging, opening new doors for TMS in neurology. We here review the latest clinical evidence for rTMS in pioneering neurological applications including movement disorders, Alzheimer's disease/mild cognitive impairment, epilepsy, multiple sclerosis, and disorders of consciousness.

8.
iScience ; 25(3): 103962, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35295814

RESUMO

Transcranial magnetic stimulation (TMS) has been applied to frontal eye field (FEF) and intraparietal sulcus (IPS) in isolation, to study their role in attention. However, these nodes closely interact in a "dorsal attention network". Here, we compared effects of inhibitory TMS applied to individually fMRI-localized FEF or IPS (single-node TMS), to effects of simultaneously inhibiting both regions ("network TMS"), and sham. We assessed attention performance using the lateralized attention network test, which captures multiple facets of attention: spatial orienting, alerting, and executive control. TMS showed no effects on alerting and executive control. For spatial orienting, only network TMS showed a reduction of the orienting effect in the right hemifield compared to the left hemifield, irrespective of the order of TMS application (IPS→FEF or FEF→IPS). Network TMS might prevent compensatory mechanisms within a brain network, which is promising for both research and clinical applications to achieve superior neuromodulation effects.

9.
Neuroimage ; 253: 119109, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306159

RESUMO

Transcranial alternating current stimulation (tACS) can be used to study causal contributions of oscillatory brain mechanisms to cognition and behavior. For instance, individual alpha frequency (IAF) tACS was reported to enhance alpha power and impact visuospatial attention performance. Unfortunately, such results have been inconsistent and difficult to replicate. In tACS, stimulation generally involves one frequency, sometimes individually calibrated to a peak value observed in an M/EEG power spectrum. Yet, the 'peak' actually observed in such power spectra often contains a broader range of frequencies, raising the question whether a biologically calibrated tACS protocol containing this fuller range of alpha-band frequencies might be more effective. Here, we introduce 'Broadband-alpha-tACS', a complex individually calibrated electrical stimulation protocol. We band-pass filtered left posterior resting-state EEG data around the IAF (± 2 Hz), and converted that time series into an electrical waveform for tACS stimulation of that same left posterior parietal cortex location. In other words, we stimulated a brain region with a 'replay' of its own alpha-band frequency content, based on spontaneous activity. Within-subjects (N = 24), we compared to a sham tACS session the effects of broadband-alpha tACS, power-matched spectral inverse ('alpha-removed') control tACS, and individual alpha frequency (IAF) tACS, on EEG alpha power and performance in an endogenous attention task previously reported to be affected by alpha tACS. Broadband-alpha-tACS significantly modulated attention task performance (i.e., reduced the rightward visuospatial attention bias in trials without distractors, and reduced attention benefits). Alpha-removed tACS also reduced the rightward visuospatial attention bias. IAF-tACS did not significantly modulate attention task performance compared to sham tACS, but also did not statistically significantly differ from broadband-alpha-tACS. This new broadband-alpha-tACS approach seems promising, but should be further explored and validated in future studies.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Estimulação Elétrica , Humanos , Lobo Parietal , Técnicas Estereotáxicas , Estimulação Transcraniana por Corrente Contínua/métodos
10.
Eur J Neurosci ; 55(11-12): 3418-3437, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34363269

RESUMO

Rhythmic stimulation can be applied to modulate neuronal oscillations. Such 'entrainment' is optimized when stimulation frequency is individually calibrated based on magneto/encephalography markers. It remains unknown how consistent such individual markers are across days/sessions, within a session, or across cognitive states, hemispheres and estimation methods, especially in a realistic, practical, lab setting. We here estimated individual alpha frequency (IAF) repeatedly from short electroencephalography (EEG) measurements at rest or during an attention task (cognitive state), using single parieto-occipital electrodes in 24 participants on 4 days (between-sessions), with multiple measurements over an hour on 1 day (within-session). First, we introduce an algorithm to automatically reject power spectra without a sufficiently clear peak to ensure unbiased IAF estimations. Then we estimated IAF via the traditional 'maximum' method and a 'Gaussian fit' method. IAF was reliable within- and between-sessions for both cognitive states and hemispheres, though task-IAF estimates tended to be more variable. Overall, the 'Gaussian fit' method was more reliable than the 'maximum' method. Furthermore, we evaluated how far from an approximated 'true' task-related IAF the selected 'stimulation frequency' was, when calibrating this frequency based on a short rest-EEG, a short task-EEG, or simply selecting 10 Hz for all participants. For the 'maximum' method, rest-EEG calibration was best, followed by task-EEG, and then 10 Hz. For the 'Gaussian fit' method, rest-EEG and task-EEG-based calibration were similarly accurate, and better than 10 Hz. These results lead to concrete recommendations about valid, and automated, estimation of individual oscillation markers in experimental and clinical settings.


Assuntos
Ritmo alfa , Eletroencefalografia , Algoritmos , Ritmo alfa/fisiologia , Atenção/fisiologia , Eletroencefalografia/métodos , Humanos
11.
Cell Mol Neurobiol ; 42(6): 1829-1839, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33656634

RESUMO

Despite the widespread use of the SH-SY5Y human neuroblastoma cell line in modeling human neurons in vitro, protocols for growth, differentiation and experimentation differ considerably across the literature. Many studies fully differentiate SH-SY5Y cells before experimentation, to investigate plasticity measures in a mature, human neuronal-like cell model. Prior to experimentation, serum is often removed from cell culture media, to arrest the cell growth cycle and synchronize cells. However, the exact effect of this serum removal before experimentation on mature, differentiated SH-SY5Y cells has not yet been described. In studies using differentiated SH-SY5Y cells, any effect of serum removal on plasticity markers may influence results. The aim of the current study was to systematically characterize, in differentiated, neuronal-like SH-SY5Y cells, the potentially confounding effects of complete serum removal in terms of morphological and gene expression markers of plasticity. We measured changes in commonly used morphological markers and in genes related to neuroplasticity and synaptogenesis, particularly in the BDNF-TrkB signaling pathway. We found that complete serum removal from already differentiated SH-SY5Y cells increases neurite length, neurite branching, and the proportion of cells with a primary neurite, as well as proportion of ßIII-Tubulin and MAP2 expressing cells. Gene expression results also indicate increased expression of PSD95 and NTRK2 expression 24 h after serum removal. We conclude that serum deprivation in differentiated SH-SY5Y cells affects morphology and gene expression and can potentially confound plasticity-related outcome measures, having significant implications for experimental design in studies using differentiated SH-SY5Y cells as a model of human neurons.


Assuntos
Neuroblastoma , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/metabolismo
12.
Eur J Neurosci ; 55(11-12): 3340-3351, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34592020

RESUMO

Previous research established that rhythmic sensory stimulation can affect subsequent stimulus perception, possibly through 'entrainment' of oscillations in the brain. Alpha frequency is a natural target for visual entrainment, because fluctuations in posterior alpha oscillations have been linked to visual target detection or discrimination. On the other hand, alpha oscillations also relate to attentional mechanisms, such as attentional orienting or selection. Previous visual alpha entrainment studies focused on differential processing of targets presented in-phase with the preceding rhythmic stimulation relative to out-of-phase targets (an 'SOA effect'), putatively related to the phase of entrained neuronal alpha oscillations. Fewer studies probed the consequences of rhythmic alpha stimulation for attention mechanisms related to alpha power. Here, we asked whether alpha stimulation of one hemifield has similar effects on reaction times as we see for increased alpha synchronization in magneto/electroencephalography (M/EEG) studies (i.e., more alpha means impaired processing and functional inhibition). We implemented a task inspired by attention studies, assessing reaction times to ipsilateral vs. contralateral visual targets, with and without concurrent presentation of distractors. Yet, in place of any attention cues, we presented a rhythmic, vs. arrhythmic, alpha-frequency train of visual flashes to one hemifield, in a large sample size (N = 115) in an online experiment. We found clear evidence that flash train rhythmicity did not impact task performance. We also found that the spatial congruence between the unilateral flash train and the subsequent visual target did impact response times but only in the presence of contralateral distractor stimuli. We discuss implications, limitations and future directions.


Assuntos
Ritmo alfa , Percepção Visual , Ritmo alfa/fisiologia , Discriminação Psicológica , Eletroencefalografia , Estimulação Luminosa , Percepção Visual/fisiologia
13.
Biomed Eng Online ; 20(1): 41, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906649

RESUMO

BACKGROUND: Recognition of facial expressions (FEs) plays a crucial role in social interactions. Most studies on FE recognition use static (image) stimuli, even though real-life FEs are dynamic. FE processing is complex and multifaceted, and its neural correlates remain unclear. Transitioning from static to dynamic FE stimuli might help disentangle the neural oscillatory mechanisms underlying face processing and recognition of emotion expression. To our knowledge, we here present the first time-frequency exploration of oscillatory brain mechanisms underlying the processing of dynamic FEs. RESULTS: Videos of joyful, fearful, and neutral dynamic facial expressions were presented to 18 included healthy young adults. We analyzed event-related activity in electroencephalography (EEG) data, focusing on the delta, theta, and alpha-band oscillations. Since the videos involved a transition from neutral to emotional expressions (onset around 500 ms), we identified time windows that might correspond to face perception initially (time window 1; first TW), and emotion expression recognition subsequently (around 1000 ms; second TW). First TW showed increased power and phase-locking values for all frequency bands. In the first TW, power and phase-locking values were higher in the delta and theta bands for emotional FEs as compared to neutral FEs, thus potentially serving as a marker for emotion recognition in dynamic face processing. CONCLUSIONS: Our time-frequency exploration revealed consistent oscillatory responses to complex, dynamic, ecologically meaningful FE stimuli. We conclude that while dynamic FE processing involves complex network dynamics, dynamic FEs were successfully used to reveal temporally separate oscillation responses related to face processing and subsequently emotion expression recognition.


Assuntos
Eletroencefalografia , Expressão Facial , Potenciais Evocados , Feminino , Humanos , Masculino , Adulto Jovem
14.
Neurobiol Learn Mem ; 182: 107444, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895350

RESUMO

Neural oscillations in the theta range (4-8 Hz) are thought to underlie associative memory function in the hippocampal-cortical network. While there is ample evidence supporting a role of theta oscillations in animal and human memory, most evidence is correlational. Non-invasive brain stimulation (NIBS) can be employed to modulate cortical oscillatory activity to influence brain activity, and possibly modulate deeper brain regions, such as hippocampus, through strong and reliable cortico-hippocampal functional connections. We applied focal transcranial alternating current stimulation (tACS) at 6 Hz over left parietal cortex to modulate brain activity in the putative cortico-hippocampal network to influence associative memory encoding. After encoding and brain stimulation, participants completed an associative memory and a perceptual recognition task. Results showed that theta tACS significantly decreased associative memory performance but did not affect perceptual memory performance. These results show that parietal theta tACS modulates associative processing separately from perceptual processing, and further substantiate the hypothesis that theta oscillations are implicated in the cortico-hippocampal network and associative encoding.


Assuntos
Aprendizagem por Associação/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Percepção Visual/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Vias Neurais/fisiologia , Percepção/fisiologia , Ritmo Teta , Adulto Jovem
15.
Front Mol Neurosci ; 13: 528396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192288

RESUMO

Transcranial Magnetic Stimulation (TMS) is a form of non-invasive brain stimulation, used to alter cortical excitability both in research and clinical applications. The intermittent and continuous Theta Burst Stimulation (iTBS and cTBS) protocols have been shown to induce opposite after-effects on human cortex excitability. Animal studies have implicated synaptic plasticity mechanisms long-term potentiation (LTP, for iTBS) and depression (LTD, for cTBS). However, the neural basis of TMS effects has not yet been studied in human neuronal cells, in particular at the level of gene expression and synaptogenesis. To investigate responses to TBS in living human neurons, we differentiated human SH-SY5Y cells toward a mature neural phenotype, and stimulated them with iTBS, cTBS, or sham (placebo) TBS. Changes in (a) mRNA expression of a set of target genes (previously associated with synaptic plasticity), and (b) morphological parameters of neurite outgrowth following TBS were quantified. We found no general effects of stimulation condition or time on gene expression, though we did observe a significantly enhanced expression of plasticity genes NTRK2 and MAPK9 24 h after iTBS as compared to sham TBS. This specific effect provides unique support for the widely assumed plasticity mechanisms underlying iTBS effects on human cortex excitability. In addition to this protocol-specific increase in plasticity gene expression 24 h after iTBS stimulation, we establish the feasibility of stimulating living human neuron with TBS, and the importance of moving to more complex human in vitro models to understand the underlying plasticity mechanisms of TBS stimulation.

16.
iScience ; 23(7): 101282, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32604063

RESUMO

Low-frequency oscillations are proposed to be involved in separating neuronal representations belonging to different items. Although item-specific neuronal activity was found to cluster on different oscillatory phases, the influence of this mechanism on perception is unknown. Here, we investigated the perceptual consequences of neuronal item separation through oscillatory clustering. In an electroencephalographic experiment, participants categorized sounds parametrically varying in pitch, relative to an arbitrary pitch boundary. Pre-stimulus theta and alpha phase biased near-boundary sound categorization to one category or the other. Phase also modulated whether evoked neuronal responses contributed stronger to the fit of the sound envelope of one or another category. Intriguingly, participants with stronger oscillatory clustering (phase strongly biasing sound categorization) in the theta, but not alpha, range had steeper perceptual psychometric slopes (sharper sound category discrimination). These results indicate that neuronal sorting by phase directly influences subsequent perception and has a positive impact on discrimination performance.

17.
Eur J Neurosci ; 51(11): 2299-2313, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31943418

RESUMO

In recent years, the influence of alpha (7-13 Hz) phase on visual processing has received a lot of attention. Magneto-/encephalography (M/EEG) studies showed that alpha phase indexes visual excitability and task performance. Studies with transcranial alternating current stimulation (tACS) aim to modulate oscillations and causally impact task performance. Here, we applied right occipital tACS (O2 location) to assess the functional role of alpha phase in a series of experiments. We presented visual stimuli at different pre-determined, experimentally controlled, phases of the entraining tACS signal, hypothesizing that this should result in an oscillatory pattern of visual performance in specifically left hemifield detection tasks. In experiment 1, we applied 10 Hz tACS and used separate psychophysical staircases for six equidistant tACS-phase conditions, obtaining contrast thresholds for detection of visual gratings in left or right hemifield. In experiments 2 and 3, tACS was at EEG-based individual peak alpha frequency. In experiment 2, we measured detection rates for gratings with (pseudo-)fixed contrast. In experiment 3, participants detected brief luminance changes in a custom-built LED device, at eight equidistant alpha phases. In none of the experiments did the primary outcome measure over phase conditions consistently reflect a one-cycle sinusoid. However, post hoc analyses of reaction times (RT) suggested that tACS alpha phase did modulate RT for specifically left hemifield targets in both experiments 1 and 2 (not measured in experiment 3). This observation requires future confirmation, but is in line with the idea that alpha phase causally gates visual inputs through cortical excitability modulation.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Atenção , Humanos , Tempo de Reação , Análise e Desempenho de Tarefas , Percepção Visual
18.
Neuroimage ; 207: 116429, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805381

RESUMO

Visuospatial attention theories often propose hemispheric asymmetries underlying the control of attention. In general support of these theories, previous EEG/MEG studies have shown that spatial attention is associated with hemispheric modulation of posterior alpha power (gating by inhibition). However, since measures of alpha power are typically expressed as lateralization scores, or collapsed across left and right attention shifts, the individual hemispheric contribution to the attentional control mechanism remains unclear. This is, however, the most crucial and decisive aspect in which the currently competing attention theories continue to disagree. To resolve this long-standing conflict, we derived predictions regarding alpha power modulations from Heilman's hemispatial theory and Kinsbourne's interhemispheric competition theory and tested them empirically in an EEG experiment. We used an attention paradigm capable of isolating alpha power modulation in two attentional states, namely attentional bias in a neutral cue condition and spatial orienting following directional cues. Differential alpha modulations were found for both hemispheres across conditions. When anticipating peripheral visual targets without preceding directional cues (neutral condition), posterior alpha power in the left hemisphere was generally lower and more strongly modulated than in the right hemisphere, in line with the interhemispheric competition theory. Intriguingly, however, while alpha power in the right hemisphere was modulated by both, cue-directed leftward and rightward attention shifts, the left hemisphere only showed modulations by rightward shifts of spatial attention, in line with the hemispatial theory. This suggests that the two theories may not be mutually exclusive, but rather apply to different attentional states.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Eletroencefalografia/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Estimulação Luminosa
19.
Neuropsychologia ; 137: 107304, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31838099

RESUMO

As a highly social species, we constantly evaluate human faces to decide whether we can trust someone. Previous studies suggest that face trustworthiness can be processed unconsciously, but the underlying neural pathways remain unclear. Specifically, the question remains whether processing of face trustworthiness relies on early visual cortex (EVC), required for conscious perception. If processing of trustworthiness can bypass EVC, then disrupting EVC should impair subjective (conscious) trustworthiness perception while leaving objective (forced-choice) trustworthiness judgment intact. We applied double-pulse transcranial magnetic stimulation (TMS) to right EVC, at different stimulus onset asynchronies (SOAs) from presentation of a face in either the left or right hemifield. Faces were slightly rotated clockwise or counterclockwise, and were either trustworthy or untrustworthy. On each trial, participants discriminated 1) trustworthiness, 2) stimulus rotation, and 3) reported subjective visibility of trustworthiness. At early SOAs and specifically in the left hemifield, performance on the rotation task was impaired by TMS. Crucially, though TMS also impaired subjective visibility of trustworthiness, no effects on trustworthiness discrimination were obtained. Thus, conscious perception of face trustworthiness (captured by subjective visibility ratings) relies on intact EVC, while objective forced-choice trustworthiness judgments may not. These results are consistent with the hypothesis that objective trustworthiness processing can bypass EVC. For basic visual features, extrastriate pathways are well-established; but face trustworthiness depends on a complex configuration of features. Its potential processing without EVC is therefore of particular interest, further highlighting its ecological relevance.


Assuntos
Reconhecimento Facial/fisiologia , Percepção Social , Percepção Espacial/fisiologia , Estimulação Magnética Transcraniana , Confiança , Córtex Visual/fisiologia , Adolescente , Adulto , Humanos , Adulto Jovem
20.
PLoS One ; 14(11): e0217729, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774818

RESUMO

BACKGROUND: Voluntary shifts of visuospatial attention are associated with a lateralization of parieto-occipital alpha power (7-13Hz), i.e. higher power in the hemisphere ipsilateral and lower power contralateral to the locus of attention. Recent noninvasive neuromodulation studies demonstrated that alpha power can be experimentally increased using transcranial alternating current stimulation (tACS). OBJECTIVE/HYPOTHESIS: We hypothesized that tACS at alpha frequency over the left parietal cortex induces shifts of attention to the left hemifield. However, spatial attention shifts not only occur voluntarily (endogenous/ top-down), but also stimulus-driven (exogenous/ bottom-up). To study the task-specificity of the potential effects of tACS on attentional processes, we administered three conceptually different spatial attention tasks. METHODS: 36 healthy volunteers were recruited from an academic environment. In two separate sessions, we applied either high-density tACS at 10Hz, or sham tACS, for 35-40 minutes to their left parietal cortex. We systematically compared performance on endogenous attention, exogenous attention, and stimulus detection tasks. RESULTS: In the endogenous attention task, a greater leftward bias in reaction times was induced during left parietal 10Hz tACS as compared to sham. There were no stimulation effects in either the exogenous attention or the stimulus detection task. CONCLUSION: The study demonstrates that high-density tACS at 10Hz can be used to modulate visuospatial attention performance. The tACS effect is task-specific, indicating that not all forms of attention are equally susceptible to the stimulation.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Processamento Espacial/fisiologia , Estimulação Transcraniana por Corrente Contínua , Percepção Visual/fisiologia , Adolescente , Adulto , Movimentos Oculares/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Voluntários Saudáveis/psicologia , Humanos , Masculino , Lobo Occipital/fisiologia , Lobo Parietal/fisiologia , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...