Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 5: e3133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382234

RESUMO

The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.

2.
Crit Rev Biotechnol ; 36(4): 665-74, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25641326

RESUMO

Lipoxygenases (LOXs) are iron- or manganese-containing oxidative enzymes found in plants, animals, bacteria and fungi. LOXs catalyze the oxidation of polyunsaturated fatty acids to the corresponding highly reactive hydroperoxides. Production of hydroperoxides by LOX can be exploited in different applications such as in bleaching of colored components, modification of lipids originating from different raw materials, production of lipid derived chemicals and production of aroma compounds. Most application research has been carried out using soybean LOX, but currently the use of microbial LOXs has also been reported. Development of LOX composition with high activity by heterologous expression in suitable production hosts would enable full exploitation of the potential of LOX derived reactions in different applications. Here, we review the biological role of LOXs, their heterologous production, as well as potential use in different applications. LOXs may fulfill an important role in the design of processes that are far more environmental friendly than currently used chemical reactions. Difficulties in screening for the optimal enzymes and producing LOX enzymes in sufficient amounts prevent large-scale application so far. With this review, we summarize current knowledge of LOX enzymes and the way in which they can be produced and applied.


Assuntos
Lipoxigenases , Animais , Bactérias/metabolismo , Humanos , Lipoxigenases/química , Lipoxigenases/metabolismo , Conformação Proteica
3.
Bioengineered ; 5(5): 335-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482236

RESUMO

Itaconic acid is an important building block for the chemical industry. Currently, Aspergillus terreus is the main organism used for itaconic acid production. Due to the enormous citric acid production capacity of Aspergillus niger, this host is investigated as a potential itaconic acid production host. Several strategies have been tried so far: fermentation optimization, expression of cis-aconitate decarboxylase (cadA) alone and in combination with aconitase targeted to the same compartment, chassis optimization, and the heterologous expression of two transporters flanking the cadA gene. We showed that the heterologous expression of these two transporters were key to improving itaconic acid production in an A. niger strain that was unable to produce oxalic acid and gluconic acid. The expression of transporters has increased the production levels of other industrially relevant processes as well, such as ß-lactam antibiotics and bioethanol. Thus far, the role of transporters in production process optimization is a bit overlooked.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus/genética , Carboxiliases/metabolismo , Proteínas Fúngicas/metabolismo , Succinatos/metabolismo
4.
AMB Express ; 4: 65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401068

RESUMO

Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain just ppo genes where the human pathogenic Aspergillus flavus and Aspergillus fumigatus contain ppo genes as well as lipoxygenases. Lipoxygenases catalyze the synthesis of oxylipins and are hypothesized to be involved in quorum-sensing abilities and invading plant tissue. In this study we used A. nidulans WG505 as an expression host to heterologously express Gaeumannomyces graminis lipoxygenase. The presence of the recombinant LOX induced phenotypic changes in A. nidulans transformants. Also, a proteomic analysis of an A. nidulans LOX producing strain indicated that the heterologous protein was degraded before its glycosylation in the secretory pathway. We observed that the presence of LOX induced the specific production of aminopeptidase Y that possibly degrades the G. graminis lipoxygenase intercellularly. Also the presence of the protein thioredoxin reductase suggests that the G. graminis lipoxygenase is actively repressed in A. nidulans.

5.
AMB Express ; 4: 66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177540

RESUMO

Pectin is a structural heteropolysaccharide of the primary cell walls of plants and as such is a significant fraction of agricultural waste residues that is currently insufficiently used. Its main component, D-galacturonic acid, is an attractive substrate for bioconversion. The complete metabolic pathway is present in the genome of Aspergillus niger, that is used in this study. The objective was to identify the D-galacturonic acid transporter in A. niger and to use this transporter to study D-galacturonic acid metabolism. We have functionally characterized the gene An14g04280 that encodes the D-galacturonic acid transporter in A. niger. In a mixed sugar fermentation it was found that the An14g04280 overexpression strain, in contrast to the parent control strain, has a preference for D-galacturonic acid over D-xylose as substrate. Overexpression of this transporter in A. niger resulted in a strong increase of D-galacturonic acid uptake and induction of the D-galacturonic acid reductase activity, suggesting a metabolite controlled regulation of the endogenous D-galacturonic acid catabolic pathway.

6.
Microb Cell Fact ; 13: 11, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438100

RESUMO

BACKGROUND: Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. RESULTS: Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5-8 times higher than previously described. CONCLUSIONS: Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over twenty five-fold higher levels of itaconic acid and show a twenty-fold increase in yield compared to a strain expressing only CadA.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus/genética , Carboxiliases/metabolismo , Proteínas Fúngicas/metabolismo , Succinatos/metabolismo , Reatores Biológicos , Carboxiliases/genética , Ácido Cítrico/metabolismo , Clonagem Molecular , Variações do Número de Cópias de DNA , Proteínas Fúngicas/genética , Hidrolases/genética , Hidrolases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Família Multigênica
7.
Appl Microbiol Biotechnol ; 98(3): 1261-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24276623

RESUMO

Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database and to align the sequences obtained using Multiple Sequence Comparison by Log-Expectation. We constructed a phylogenetic tree with the use of Quicktree to visualize the relation of fungal LOXs towards other LOXs. These sequences were analyzed with respect to the signal sequence, C-terminal amino acid, the stereochemistry of the formed oxylipin, and the metal ion cofactor usage. This study shows fungal LOXs are divided into two groups, the Ile- and the Val-groups. The Ile-group has a conserved WRYAK sequence that appears to be characteristic for fungal LOXs and has as a C-terminal amino acid Ile. The Val-group has a highly conserved WL-L/F-AK sequence that is also found in LOXs of plant and animal origin. We found that fungal LOXs with this conserved sequence have a Val at the C-terminus in contrast to other LOXs of fungal origin. Also, these LOXs have signal sequences implying these LOXs will be expressed extracellularly. Our results show that in this group, in addition to the Gaeumannomyces graminis and the Magnaporthe salvinii LOXs, the Aspergillus fumigatus LOX uses manganese as a cofactor.


Assuntos
Fungos/enzimologia , Fungos/genética , Lipoxigenases/genética , Motivos de Aminoácidos , Biologia Computacional/métodos , Sequência Conservada , Filogenia , Homologia de Sequência de Aminoácidos
8.
AMB Express ; 3(1): 57, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24034235

RESUMO

A modified 6-phosphofructo-1-kinase was expressed in a citrate producing Aspergillus niger strain in combination with cis-aconitate decarboxylase from Aspergillus terreus to study the effect on the production of itaconic acid. The modified pfkA gene was also expressed in combination with the itaconic acid biosynthetic cluster from A. terreus, which consists of cis-aconitate decarboxylase cadA, a putative mitochondrial transporter mttA and a putative plasmamembrane transporter mfsA. The combined expression of pfkA and cadA resulted in increased citrate levels, but did not show increased itaconic acid levels. The combined expression of pfkA with the itaconic acid biosynthetic cluster resulted in significantly increased itaconic acid production at earlier time points. Also the itaconic acid productivity increased significantly. The maximum itaconic acid productivity that was reached under these conditions was 0.15 g/L/h, which is only a factor 17 lower than the 2.5 g/L/h that according to the US Department of Energy should be achieved to have an economically feasible production process.

9.
Microb Cell Fact ; 11: 165, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23270588

RESUMO

BACKGROUND: Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS: The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger were homologously expressed, purified and analyzed for their biocatalytic potential. All three recombinant enzymes were monomers with apparent molecular masses ranging from 80 to 110 kDa. McoA and McoG resulted to be blue, whereas McoB was yellow. The newly obtained oxidases displayed strongly different activities towards aromatic compounds and synthetic dyes. McoB exhibited high catalytic efficiency with N,N-dimethyl-p-phenylenediamine (DMPPDA) and 2,2-azino-di(3-ethylbenzthiazoline) sulfonic acid (ABTS), and appeared to be a promising biocatalyst. Besides oxidizing a variety of phenolic compounds, McoB catalyzed successfully the decolorization and detoxification of the widely used textile dye malachite green. CONCLUSIONS: The A. niger McoA, McoB, and McoG enzymes showed clearly different catalytic properties. Yellow McoB showed broad substrate specificity, catalyzing the oxidation of several phenolic compounds commonly present in different industrial effluents. It also harbored high decolorization and detoxification activity with the synthetic dye malachite green, showing to have an interesting potential as a new industrial biocatalyst.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Aspergillus niger/química , Aspergillus niger/genética , Aspergillus niger/metabolismo , Biocatálise , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Cinética , Peso Molecular , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/isolamento & purificação , Fenóis/metabolismo , Especificidade por Substrato
10.
Appl Microbiol Biotechnol ; 94(4): 875-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22526790

RESUMO

Rhizopus oryzae is a filamentous fungus belonging to the Zygomycetes. It is among others known for its ability to produce the sustainable platform chemicals L: -(+)-lactic acid, fumaric acid, and ethanol. During glycolysis, all fermentable carbon sources are metabolized to pyruvate and subsequently distributed over the pathways leading to the formation of these products. These platform chemicals are produced in high yields on a wide range of carbon sources. The yields are in excess of 85 % of the theoretical yield for L: -(+)-lactic acid and ethanol and over 65 % for fumaric acid. The study and optimization of the metabolic pathways involved in the production of these compounds requires well-developed metabolic engineering tools and knowledge of the genetic makeup of this organism. This review focuses on the current metabolic engineering techniques available for R. oryzae and their application on the metabolic pathways of the main fermentation products.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas/genética , Rhizopus/genética , Rhizopus/metabolismo , Biotransformação , Carbono/metabolismo , Etanol/metabolismo , Fumaratos/metabolismo , Ácido Láctico/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-22529332

RESUMO

One of the challenges in genetic network reconstruction is finding experimental designs that maximize the information content in a data set. In this paper, the information value of mRNA transcription time course experiments was used to compare experimental designs. The study concerns the dynamic response of genes in the XlnR regulon of Aspergillus niger, with the goal to find the best moment in time to administer an extra pulse of inducing D-xylose. Low and high D-xylose pulses were used to perturb the XlnR regulon. Evaluation of the experimental methods was based on simulation of the regulon. Models that govern the regulation of the target genes in this regulon were used for the simulations. Parameter sensitivity analysis, the Fisher Information Matrix (FIM) and the modified E-criterion were used to assess the design performances. The results show that the best time to give a second D-xylose pulse is when the D-xylose concentration from the first pulse has not yet completely faded away. Due to the presence of a repression effect the strength of the second pulse must be optimized, rather than maximized. The results suggest that the modified E-criterion is a better metric than the sum of integrals of absolute sensitivity for comparing alternative designs.


Assuntos
Aspergillus niger/genética , Simulação por Computador , Redes Reguladoras de Genes , Regulon/genética , Aspergillus niger/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/metabolismo , Transcrição Gênica , Xilose/metabolismo
12.
Appl Environ Microbiol ; 78(9): 3145-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344641

RESUMO

Aspergillus niger is an important organism for the production of industrial enzymes such as hemicellulases and pectinases. The xylan-backbone monomer, d-xylose, is an inducing substance for the coordinate expression of a large number of polysaccharide-degrading enzymes. In this study, the responses of 22 genes to low (1 mM) and high (50 mM) d-xylose concentrations were investigated. These 22 genes encode enzymes that function as xylan backbone-degrading enzymes, accessory enzymes, cellulose-degrading enzymes, or enzymes involved in the pentose catabolic pathway in A. niger. Notably, genes encoding enzymes that have a similar function (e.g., xylan backbone degradation) respond in a similar manner to different concentrations of d-xylose. Although low d-xylose concentrations provoke the greatest change in transcript levels, in particular, for hemicellulase-encoding genes, transcript formation in the presence of high concentrations of d-xylose was also observed. Interestingly, a high d-xylose concentration is favorable for certain groups of genes. Furthermore, the repressing influence of CreA on the transcription and transcript levels of a subset of these genes was observed regardless of whether a low or high concentration of d-xylose was used. Interestingly, the decrease in transcript levels of certain genes on high d-xylose concentrations is not reflected by the transcript level of their activator, XlnR. Regardless of the d-xylose concentration applied and whether CreA was functional, xlnR was constitutively expressed at a low level.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrolases/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Xilose/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica
13.
Microb Cell Fact ; 10: 78, 2011 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21981827

RESUMO

BACKGROUND: Many filamentous fungal genomes contain complex groups of multicopper oxidase (MCO) coding genes that makes them a good source for new laccases with potential biotechnological interest. A bioinformatics analysis of the Aspergillus niger ATCC 1015 genome resulted in the identification of thirteen MCO genes. Ten of them were cloned and homologously overexpressed. RESULTS: A bioinformatic analysis of the A. niger ATCC 1015 genome revealed the presence of 13 MCO genes belonging to three different subfamilies on the basis of their phylogenetic relationships: ascomycete laccases, fungal pigment MCOs and fungal ferroxidases. According to in silico amino acid sequence analysis, the putative genes encoding for functional extracellular laccases (mcoA, mcoB, mcoC, mcoD, mcoE, mcoF, mcoG, mcoI, mcoJ and mcoM) were placed under the control of the glaA promoter and overexpressed in A. niger N593. Enzyme activity plate assays with several common laccase substrates showed that all genes are actually expressed and code for active MCOs. Interestingly, expressed enzymes show different substrate specificities. In addition, optimization of fungal pigment MCOs extracellular production was investigated. The performance of the widely used glucoamylase signal sequence (ssGlaA) in McoA secretion was studied. Results obtained suggest that ssGlaA do not yield higher levels of secreted McoA when compared to its native secretion signal. Also, McoB synthesis was investigated using different nitrogen sources in minimal medium liquid cultures. Higher yields of extracellular McoB were achieved with (NH4)2 tartrate. CONCLUSIONS: Aspergillus niger is a good source of new laccases. The different substrate specificity observed in plate assays makes them interesting to be purified and biochemically compared. The homologous signal sequence of McoA has been shown to be a good choice for its extracellular overexpression. From the nitrogen sources tested (NH4)2 tartrate has been found to be the most appropriate for McoB production in A. niger.


Assuntos
Aspergillus niger/enzimologia , Proteínas Fúngicas/genética , Expressão Gênica , Família Multigênica , Oxirredutases/genética , Sequência de Aminoácidos , Aspergillus niger/química , Aspergillus niger/classificação , Aspergillus niger/genética , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/classificação , Fungos/enzimologia , Lacase/química , Lacase/genética , Lacase/metabolismo , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/metabolismo , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
14.
BMC Syst Biol ; 5 Suppl 1: S14, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21689473

RESUMO

BACKGROUND: In this paper the dynamics of the transcription-translation system for XlnR regulon in Aspergillus niger is modeled. The model is based on Hill regulation functions and uses ordinary differential equations. The network response to a trigger of D-xylose is considered and stability analysis is performed. The activating, repressive feedback, and the combined effect of the two feedbacks on the network behavior are analyzed. RESULTS: Simulation and systems analysis showed significant influence of activating and repressing feedback on metabolite expression profiles. The dynamics of the D-xylose input function has an important effect on the profiles of the individual metabolite concentrations. Variation of the time delay in the feedback loop has no significant effect on the pattern of the response. The stability and existence of oscillatory behavior depends on which proteins are involved in the feedback loop. CONCLUSIONS: The dynamics in the regulation properties of the network are dictated mainly by the transcription and translation degradation rate parameters, and by the D-xylose consumption profile. This holds true with and without feedback in the network. Feedback was found to significantly influence the expression dynamics of genes and proteins. Feedback increases the metabolite abundance, changes the steady state values, alters the time trajectories and affects the response oscillatory behavior and stability conditions. The modeling approach provides insight into network behavioral dynamics particularly for small-sized networks. The analysis of the network dynamics has provided useful information for experimental design for future in vitro experimental work.


Assuntos
Aspergillus niger/genética , Proteínas Fúngicas/genética , Modelos Genéticos , Regulon/genética , Transativadores/genética , Retroalimentação Fisiológica , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/genética , Transcrição Gênica/genética
15.
PLoS One ; 6(6): e20865, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698107

RESUMO

Fungi utilize polysaccharide substrates through extracellular digestion catalyzed by secreted enzymes. Thus far, protein secretion by the filamentous fungus Aspergillus niger has mainly been studied at the level of individual proteins and by genome and transcriptome analyses. To extend these studies, a complementary proteomics approach was applied with the aim to investigate the changes in secretome and microsomal protein composition resulting from a shift to a high level secretion condition. During growth of A. niger on D-sorbitol, small amounts of D-maltose or D-xylose were used as inducers of the extracellular amylolytic and xylanolytic enzymes. Upon induction, protein compositions in the extracellular broth as well as in enriched secretory organelle (microsomal) fractions were analyzed using a shotgun proteomics approach. In total 102 secreted proteins and 1,126 microsomal proteins were identified in this study. Induction by D-maltose or D-xylose resulted in the increase in specific extracellular enzymes, such as glucoamylase A on D-maltose and ß-xylosidase D on D-xylose, as well as of microsomal proteins. This reflects the differential expression of selected genes coding for dedicated extracellular enzymes. As expected, the addition of extra D-sorbitol had no effect on the expression of carbohydrate-active enzymes, compared to addition of D-xylose or D-maltose. Furthermore, D-maltose induction caused an increase in microsomal proteins related to translation (e.g., Rpl15) and vesicular transport (e.g., the endosomal-cargo receptor Erv14). Millimolar amounts of the inducers D-maltose and D-xylose are sufficient to cause a direct response in specific protein expression levels. Also, after induction by D-maltose or D-xylose, the induced enzymes were found in microsomes and extracellular. In agreement with our previous findings for D-xylose induction, D-maltose induction leads to recruitment of proteins involved in proteasome-mediated degradation.


Assuntos
Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Maltose/metabolismo , Proteômica , Xilose/metabolismo , Cromatografia Líquida , Reação em Cadeia da Polimerase , Espectrometria de Massas em Tandem
16.
ISME J ; 5(9): 1494-504, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21614084

RESUMO

Interactions between bacteria and fungi cover a wide range of incentives, mechanisms and outcomes. The genus Collimonas consists of soil bacteria that are known for their antifungal activity and ability to grow at the expense of living fungi. In non-contact confrontation assays with the fungus Aspergillus niger, Collimonas fungivorans showed accumulation of biomass concomitant with inhibition of hyphal spread. Through microarray analysis of bacterial and fungal mRNA from the confrontation arena, we gained new insights into the mechanisms underlying the fungistatic effect and mycophagous phenotype of collimonads. Collimonas responded to the fungus by activating genes for the utilization of fungal-derived compounds and for production of a putative antifungal compound. In A. niger, differentially expressed genes included those involved in lipid and cell wall metabolism and cell defense, which correlated well with the hyphal deformations that were observed microscopically. Transcriptional profiles revealed distress in both partners: downregulation of ribosomal proteins and upregulation of mobile genetic elements in the bacteria and expression of endoplasmic reticulum stress and conidia-related genes in the fungus. Both partners experienced nitrogen shortage in each other's presence. Overall, our results indicate that the Collimonas/Aspergillus interaction is a complex interplay between trophism, antibiosis and competition for nutrients.


Assuntos
Antibiose , Aspergillus niger/fisiologia , Perfilação da Expressão Gênica , Oxalobacteraceae/fisiologia , Animais , Aspergillus niger/genética , Hifas/fisiologia , Nitrogênio/metabolismo , Oxalobacteraceae/genética , Esporos Fúngicos/fisiologia , Estresse Fisiológico
17.
Appl Microbiol Biotechnol ; 89(2): 225-37, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20922379

RESUMO

Filamentous fungi are widely known for their industrial applications, namely, the production of food-processing enzymes and metabolites such as antibiotics and organic acids. In the past decade, the full genome sequencing of filamentous fungi increased the potential to predict encoded proteins enormously, namely, hydrolytic enzymes or proteins involved in the biosynthesis of metabolites of interest. The integration of genome sequence information with possible phenotypes requires, however, the knowledge of all the proteins in the cell in a system-wise manner, given by proteomics. This review summarises the progress of proteomics and its importance for the study of biotechnological processes in filamentous fungi. A major step forward in proteomics was to couple protein separation with high-resolution mass spectrometry, allowing accurate protein quantification. Despite the fact that most fungal proteomic studies have been focused on proteins from mycelial extracts, many proteins are related to processes which are compartmentalised in the fungal cell, e.g. ß-lactam antibiotic production in the microbody. For the study of such processes, a targeted approach is required, e.g. by organelle proteomics. Typical workflows for sample preparation in fungal organelle proteomics are discussed, including homogenisation and sub-cellular fractionation. Finally, examples are presented of fungal organelle proteomic studies, which have enlarged the knowledge on areas of interest to biotechnology, such as protein secretion, energy production or antibiotic biosynthesis.


Assuntos
Fungos/química , Fungos/metabolismo , Microbiologia Industrial/tendências , Proteômica , Biotecnologia/tendências , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética
18.
Appl Environ Microbiol ; 76(13): 4421-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20453123

RESUMO

Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which-many of them hypothetical proteins-were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles.


Assuntos
Aspergillus niger/metabolismo , Microssomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Xilose/farmacologia , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Aspergillus niger/ultraestrutura , Celulase/biossíntese , Cromatografia Líquida , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Espectrometria de Massas , Complexo de Endopeptidases do Proteassoma/genética , Espectrometria de Massas em Tandem
19.
Fungal Genet Biol ; 47(6): 539-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20350613

RESUMO

The fungus Aspergillus niger has been studied in considerable detail with respect to various industrial applications. Although its central metabolic pathways are established relatively well, the mechanisms that control the adaptation of its metabolism are understood rather poorly. In this study, clustering of co-expressed genes has been performed on the basis of DNA microarray data sets from two experimental approaches. In one approach, low amounts of inducer caused a relatively mild perturbation, while in the other approach the imposed environmental conditions including carbon source starvation caused severe perturbed stress. A set of conserved genes was used to construct gene co-expression networks for both the individual and combined data sets. Comparative analysis revealed the existence of modules, some of which are present in all three networks. In addition, experimental condition-specific modules were identified. Module-derived consensus expression profiles enabled the integration of all protein-coding A. niger genes to the co-expression analysis, including hypothetical and poorly conserved genes. Conserved sequence motifs were detected in the upstream region of genes that cluster in some modules, e.g., the binding site for the amino acid metabolism-related transcription factor CpcA as well as for the fatty acid metabolism-related transcription factors, FarA and FarB. Moreover, not previously described putative transcription factor binding sites were discovered for two modules: the motif 5'-CGACAA is overrepresented in the module containing genes encoding cytosolic ribosomal proteins, while the motif 5'-GGCCGCG is overrepresented in genes related to 'gene expression', such as RNA helicases and translation initiation factors.


Assuntos
Aspergillus niger/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Aminoácidos/metabolismo , Aspergillus niger/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Análise por Conglomerados , Sequência Conservada , DNA Fúngico/genética , Ácidos Graxos/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Genes Fúngicos , Análise de Sequência com Séries de Oligonucleotídeos , Peroxissomos/fisiologia , Ligação Proteica , Fatores de Transcrição/metabolismo
20.
Appl Environ Microbiol ; 75(8): 2414-22, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19233957

RESUMO

The proper design of DNA microarray experiments requires knowledge of biological and technical variation of the studied biological model. For the filamentous fungus Aspergillus niger, a fast, quantitative real-time PCR (qPCR)-based hierarchical experimental design was used to determine this variation. Analysis of variance components determined the contribution of each processing step to total variation: 68% is due to differences in day-to-day handling and processing, while the fermentor vessel, cDNA synthesis, and qPCR measurement each contributed equally to the remainder of variation. The global transcriptional response to d-xylose was analyzed using Affymetrix microarrays. Twenty-four statistically differentially expressed genes were identified. These encode enzymes required to degrade and metabolize D-xylose-containing polysaccharides, as well as complementary enzymes required to metabolize complex polymers likely present in the vicinity of D-xylose-containing substrates. These results confirm previous findings that the d-xylose signal is interpreted by the fungus as the availability of a multitude of complex polysaccharides. Measurement of a limited number of transcripts in a defined experimental setup followed by analysis of variance components is a fast and reliable method to determine biological and technical variation present in qPCR and microarray studies. This approach provides important parameters for the experimental design of batch-grown filamentous cultures and facilitates the evaluation and interpretation of microarray data.


Assuntos
Perfilação da Expressão Gênica/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , Manejo de Espécimes/métodos , Análise de Variância , Aspergillus niger/genética , Regulação Fúngica da Expressão Gênica , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...