Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(8): 1588-1604, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047730

RESUMO

Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.


Assuntos
Epigênese Genética , Histona Desacetilases , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Masculino , Feminino , Pré-Escolar , Criança , Deficiência Intelectual/genética , Sequenciamento do Exoma , Adolescente , Deficiências do Desenvolvimento/genética , Fenótipo , Lactente , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
2.
Front Behav Neurosci ; 10: 233, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066199

RESUMO

To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU), an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background) is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter-levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely (1) activity levels, (2) motor performance, (3) anxiety and/or depression-like behavior, and (4) learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the PAH mutation is influenced by other factors than Phe levels alone. Therefore, future research should consider these differences when choosing one of the genetic strains to investigate the pathophysiological mechanism underlying PKU-related behavior, especially when combined with new treatment strategies.

3.
Mol Genet Metab ; 114(1): 29-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25466353

RESUMO

In phenylketonuria (PKU), cerebral neurotransmitter deficiencies have been suggested to contribute to brain dysfunction. Present treatment aims to reduce blood phenylalanine concentrations by a phenylalanine-restricted diet, while in some patients blood phenylalanine concentrations also respond to cofactor treatment with tetrahydrobiopterin (BH4). Recently, a repurposing approach of BH4 was suggested to increase cerebral neurotransmitter synthesis. To investigate whether BH4 may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, we investigated blood prolactin concentrations-as a parameter of brain dopamine availability. We retrospectively compared blood prolactin in relation to blood phenylalanine concentrations of nine (male) BH4-responsive PKU patients, when being treated without and with BH4. Blood prolactin concentrations positively correlated to blood phenylalanine concentrations (p=0.002), being significantly lower with than without BH4 treatment (p=0.047). In addition, even in this small number of male patients, blood prolactin concentrations tended to be lower at increasing BH4 dose (p=0.054), while taking blood phenylalanine concentrations into account (p=0.002). In individual BH4-responsive patients, median blood prolactin concentrations were significantly lower while using BH4 than before using BH4 treatment (p=0.024), whereas median blood phenylalanine concentrations tended to be lower, but this did not reach statistical significance (p=0.107). Therefore, these data show that high blood phenylalanine in BH4-responsive PKU male patients seems to be associated with increased blood prolactin concentrations, suggesting reduced cerebral dopamine availability. Moreover, these data suggest that BH4 treatment in itself could decrease blood prolactin concentrations in a dose-responsive way, independent of blood phenylalanine concentrations. We conclude that these preliminary data indicate that BH4 treatment may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, possibly in a dose-dependent manner, but further research would be warranted.


Assuntos
Biopterinas/análogos & derivados , Encéfalo/metabolismo , Dopamina/metabolismo , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Prolactina/sangue , Adolescente , Adulto , Biopterinas/uso terapêutico , Criança , Feminino , Humanos , Masculino , Fenilcetonúrias/sangue , Estudos Retrospectivos
4.
J Cereb Blood Flow Metab ; 35(2): 200-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25352046

RESUMO

In phenylketonuria, elevated plasma phenylalanine concentrations may disturb blood-to-brain large neutral amino acid (LNAA) transport and cerebral protein synthesis (CPS). We investigated the associations between these processes, using data obtained by positron emission tomography with l-[1-(11)C]-tyrosine ((11)C-Tyr) as a tracer. Blood-to-brain transport of non-Phe LNAAs was modeled by the rate constant for (11)C-Tyr transport from arterial plasma to brain tissue (K1), while CPS was modeled by the rate constant for (11)C-Tyr incorporation into cerebral protein (k3). Brain phenylalanine concentrations were measured by magnetic resonance spectroscopy in three volumes of interest (VOIs): supraventricular brain tissue (VOI 1), ventricular brain tissue (VOI 2), and fluid-containing ventricular voxels (VOI 3). The associations between k3 and each predictor variable were analyzed by multiple linear regression. The rate constant k3 was inversely associated with brain phenylalanine concentrations in VOIs 2 and 3 (adjusted R(2)=0.826, F=19.936, P=0.021). Since brain phenylalanine concentrations in these VOIs highly correlated with each other, the specific associations of each predictor with k3 could not be determined. The associations between k3 and plasma phenylalanine concentration, K1, and brain phenylalanine concentrations in VOI 1 were nonsignificant. In conclusion, our study shows an inverse association between k3 and increased brain phenylalanine concentrations.


Assuntos
Química Encefálica , Modelos Biológicos , Fenilalanina/sangue , Fenilcetonúrias/sangue , Tomografia por Emissão de Pósitrons , Biossíntese de Proteínas , Adulto , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia
5.
Orphanet J Rare Dis ; 9: 7, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24422943

RESUMO

Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with protein substitution with all amino acids except the amino acids prior to the metabolic block and enriched with the amino acid that has become essential by the enzymatic defect. For some aminoacidopathies, supplementation of one or two amino acids, that have not become essential by the enzymatic defect, has been suggested. This so-called single amino acid supplementation can serve different treatment objectives, but evidence is limited. The aim of the present article is to provide a systematic review on the reasons for applications of single amino acid supplementation in aminoacidopathies treated with natural protein restriction and synthetic amino acid mixtures.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Aminoácidos/uso terapêutico , Suplementos Nutricionais , Humanos
6.
Orphanet J Rare Dis ; 8: 133, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007597

RESUMO

BACKGROUND: In phenylketonuria (PKU), elevated blood phenylalanine (Phe) concentrations are considered to impair transport of large neutral amino acids (LNAAs) from blood to brain. This impairment is believed to underlie cognitive deficits in PKU via different mechanisms, including reduced cerebral protein synthesis. In this study, we investigated the hypothesis that impaired LNAA influx relates to reduced cerebral protein synthesis. METHODS: Using positron emission tomography, L-[1-11C]-tyrosine (11C-Tyr) brain influx and incorporation into cerebral protein were studied in 16 PKU patients (median age 24, range 16 - 47 years), most of whom were early and continuously treated. Data were analyzed by regression analyses, using either 11C-Tyr brain influx or 11C-Tyr cerebral protein incorporation as outcome variable. Predictor variables were baseline plasma Phe concentration, Phe tolerance, age, and 11C-Tyr brain efflux. For the modelling of cerebral protein incorporation, 11C-Tyr brain influx was added as a predictor variable. RESULTS: 11C-Tyr brain influx was inversely associated with plasma Phe concentrations (median 512, range 233 - 1362 µmol/L; delta adjusted R2=0.571, p=0.013). In addition, 11C-Tyr brain influx was positively associated with 11C-Tyr brain efflux (delta adjusted R2=0.098, p=0.041). Cerebral protein incorporation was positively associated with 11C-Tyr brain influx (adjusted R2=0.567, p<0.001). All additional associations between predictor and outcome variables were statistically nonsignificant. CONCLUSIONS: Our data favour the hypothesis that an elevated concentration of Phe in blood reduces cerebral protein synthesis by impairing LNAA transport from blood to brain. Considering the importance of cerebral protein synthesis for adequate brain development and functioning, our results support the notion that PKU treatment be continued in adulthood. Future studies investigating the effects of impaired LNAA transport on cerebral protein synthesis in more detail are indicated.


Assuntos
Encéfalo/metabolismo , Fenilcetonúrias/metabolismo , Tirosina/metabolismo , Adolescente , Adulto , Transporte Biológico/fisiologia , Radioisótopos de Carbono/metabolismo , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Mol Genet Metab ; 105(4): 566-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22300845

RESUMO

BACKGROUND: The etiology of reduced bone mineral density (BMD) in phenylketonuria (PKU) is unknown. Reduced BMD may be inherent to PKU and/or secondary to its dietary treatment. MATERIALS AND METHODS: Lumbar BMD was measured by dual-energy X-ray absorptiometry in 53 early and continuously treated PKU patients (median age 16, range 2-35 years). First, Z-scores of BMD were correlated to age group, clinical severity of PKU, mean phenylalanine (Phe) concentration and Phe variation in the year prior to DXA scanning, as well as to blood vitamin, mineral, and alkaline phosphatase concentrations. Second, parameters were compared between subjects with reduced BMD (Z-score<-2 SD) and subjects with normal BMD. RESULTS: BMD was significantly reduced in our cohort (p=0.000). Z-scores of BMD were neither significantly correlated to age group, nor clinical severity of PKU. Both mean Phe concentration and Phe variation in the year prior to DXA scanning did not significantly correlate with Z-scores of BMD. Higher blood calcium concentrations were significantly associated with lower BMD (r(2)=-0.485, p=0.004). Other biochemical parameters, including vitamin B12 availability markers, did not show significant correlations with Z-score of BMD. Subjects with reduced BMD had significantly higher blood phosphorus concentrations than subjects with normal BMD (p=0.009). No other significant differences were found between both BMD groups. CONCLUSION: Reduced BMD in PKU is present from early age onward and does not progress with age. Therefore, BMD deserves attention from early age onward in PKU patients. Our findings are consistent with increased bone turnover in PKU. It remains unclear whether reduced BMD is inherent to PKU and/or secondary to its dietary treatment.


Assuntos
Densidade Óssea , Vértebras Lombares/metabolismo , Fenilcetonúrias/fisiopatologia , Absorciometria de Fóton , Adolescente , Adulto , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Criança , Pré-Escolar , Estudos Transversais , Dieta , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fenilalanina/sangue , Estudos Retrospectivos , Deficiência de Vitamina B 12 , Adulto Jovem
8.
J Inherit Metab Dis ; 33(6): 671-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20976625

RESUMO

Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cognitive outcome and quality of life in patients with PKU. Following various theories about the pathogenesis of cognitive dysfunction in PKU, LNAA supplementation may have multiple treatment targets: a specific reduction in brain phenylalanine concentrations, a reduction in blood (and consequently brain) phenylalanine concentrations, an increase in brain neurotransmitter concentrations, and an increase in brain essential amino acid concentrations. These treatment targets imply different treatment regimes. This review summarizes the treatment targets and the treatment regimens of LNAA supplementation and discusses the differences in LNAA intake between the classical dietary phenylalanine-restricted diet and several LNAA treatment forms.


Assuntos
Aminoácidos Neutros/uso terapêutico , Modelos Teóricos , Fenilcetonúrias/dietoterapia , Prática Profissional , Animais , Suplementos Nutricionais , Alimentos Formulados , Humanos , Racionalização
9.
J Inherit Metab Dis ; 33 Suppl 3: S413-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20852933

RESUMO

Acute liver failure may be caused by a variety of disorders including inborn errors of metabolism. In those cases, rapid metabolic investigations and adequate treatment may avoid the need for liver transplantation. We report two patients who presented with acute liver failure and were referred to our center for liver transplantation work-up. Urgent metabolic investigations revealed citrullinemia type I. Treatment for citrullinemia type I avoided the need for liver transplantation. Acute liver failure as a presentation of citrullinemia type I has not previously been reported in young children. Although acute liver failure has occasionally been described in other urea cycle disorders, these disorders may be underestimated as a cause. Timely diagnosis and treatment of these disorders may avoid liver transplantation and improve clinical outcome. Therefore, urea cycle disorders should be included in the differential diagnosis in young children presenting with acute liver failure.


Assuntos
Citrulinemia/complicações , Falência Hepática Aguda/etiologia , Transplante de Fígado , Procedimentos Desnecessários , Administração Oral , Arginina/administração & dosagem , Biomarcadores/sangue , Células Cultivadas , Citrulinemia/sangue , Citrulinemia/diagnóstico , Citrulinemia/terapia , Diagnóstico Diferencial , Dieta com Restrição de Proteínas , Quimioterapia Combinada , Feminino , Glucose/administração & dosagem , Humanos , Lactente , Infusões Intravenosas , Falência Hepática Aguda/sangue , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/terapia , Masculino , Valor Preditivo dos Testes , Benzoato de Sódio/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA