Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118510, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390732

RESUMO

Wastewater treatment plants (WWTPs) have greatly improved water quality globally. However, treated effluents still contain a complex cocktail of pollutants whose environmental effects might go unnoticed, masked by additional stressors in the receiving waters or by spatiotemporal variability. We conducted a BACI (Before-After/Control-Impact) ecosystem manipulation experiment, where we diverted part of the effluent of a large tertiary WWTP into a small, unpolluted stream to assess the effects of a well-treated and highly diluted effluent on riverine diversity and food web dynamics. We sampled basal food resources, benthic invertebrates and fish to search for changes on the structure and energy transfer of the food web with the effluent. Although effluent toxicity was low, it reduced diversity, increased primary production and herbivory, and reduced energy fluxes associated to terrestrial inputs. Altogether, the effluent decreased total energy fluxes in stream food webs, showing that treated wastewater can lead to important ecosystem-level changes, affecting the structure and functioning of stream communities even at high dilution rates. The present study shows that current procedures to treat wastewater can still affect freshwater ecosystems and highlights the need for further efforts to treat polluted waters to conserve aquatic food webs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Ecossistema , Cadeia Alimentar , Poluentes Químicos da Água/análise , Rios/química
2.
Glob Chang Biol ; 28(3): 859-876, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862833

RESUMO

Water diversion and pollution are two pervasive stressors in river ecosystems that often co-occur. Individual effects of both stressors on basal resources available to stream communities have been described, with diversion reducing detritus standing stocks and pollution increasing biomass of primary producers. However, interactive effects of both stressors on the structure and trophic basis of food webs remain unknown. We hypothesized that the interaction between both stressors increases the contribution of the green pathway in stream food webs. Given the key role of the high-quality, but less abundant, primary producers, we also hypothesized an increase in food web complexity with larger trophic diversity in the presence of water diversion and pollution. To test these hypotheses, we selected four rivers in a range of pollution subject to similar water diversion schemes, and we compared food webs upstream and downstream of the diversion. We characterized food webs by means of stable isotope analysis. Both stressors directly changed the availability of basal resources, with water diversion affecting the brown food web by decreasing detritus stocks, and pollution enhancing the green food web by promoting biofilm production. The propagation of the effects at the base of the food web to higher trophic levels differed between stressors. Water diversion had little effect on the structure of food webs, but pollution increased food chain length and trophic diversity, and reduced trophic redundancy. The effects at higher trophic levels were exacerbated when combining both stressors, as the relative contribution of biofilm to the stock of basal resources increased even further. Overall, we conclude that moderate pollution increases food web complexity and that the interaction with water abstraction seems to amplify this effect. Our study shows the importance of assessing the interaction between stressors to create predictive tools for a proper management of ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Biomassa , Rios , Água
4.
Environ Pollut ; 258: 113719, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31838390

RESUMO

The ecological effects of wastewater treatment plant (WWTP) effluents on stream ecosystems cause growing concern. However, it is difficult to assess these effects as most streams receiving WWTP effluents are also affected by other stressors. We performed a whole-ecosystem manipulation experiment following a BACI design (Before-After/Control-Impact) in order to exclude the influence of other potentially confounding factors. We diverted part of the effluent of a large tertiary urban WWTP into a small, unpolluted stream, and studied its effects on ecosystem structure and functioning over two years (i.e., one year before and one year after the effluent diversion). Although highly diluted (final concentration in the receiving stream averaged 3%), the effluent promoted biofilm chlorophyll-a and biomass (2.3 and 2.1 times, respectively), exo-enzymatic activities (phosphatase 2.2 and glucosidase 4.2 times) and invertebrate-mediated organic matter decomposition (1.4 times), but reduced phosphorus uptake capacity of the epilithic biofilm down to 0.5 of the initial values. Biofilm metabolism, reach-scale nutrient uptake and microbially-mediated organic matter decomposition were not affected. Our results indicate that even well treated and highly diluted WWTP effluents can also affect the structure of the biofilm community and stream ecosystem functioning.


Assuntos
Biofilmes , Ecossistema , Rios , Águas Residuárias , Poluentes Químicos da Água/efeitos adversos , Animais , Biomassa , Clorofila A , Invertebrados , Fósforo
5.
Aquat Toxicol ; 203: 159-171, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30138800

RESUMO

The amount of pollutants and nutrients entering rivers via point sources is increasing along with human population and activity. Although wastewater treatment plants (WWTPs) greatly reduce pollutant loads into the environment, excess nutrient loading is a problem in many streams. Using a Community and Ecosystem Function (CEF) approach, we quantified the effects of WWTP effluent on the performance of microbes and detritivores associated to organic matter decomposition, a key ecosystem process. We measured organic matter breakdown rates, respiration rates and exo-enzymatic activities of aquatic microbes. We also measured food consumption and growth rates and RNA to body-mass ratios (RNA:BM) of a dominant amphipod Echinogammarus berilloni. We predicted responses to follow a subsidy-stress pattern and differences between treatments to increase over time. To examine temporal effects of effluent, we performed a laboratory microcosm experiment under a range of effluent concentrations (0, 20, 40, 60, 80 and 100%), taking samples over time (days 8, 15 and 30; 4 and 10 replicates to assess microbe and detritivore performance respectively, per treatment and day). This experiment was combined with a field in situ Before-After Control-Impact Paired (BACIP) experiment whereby we added WWTP effluent poured (10 L s-1 during 20-40 min every 2 h) into a stream and collected microbial and detritivore samples at days 8 and 15 (5 and 15 replicates to assess the microbe and detritivore performance respectively, per period, reach and sampling day). Responses were clearer in the laboratory experiment, where the effluent caused a general subsidy response. Field measures did not show any significant response, probably because of the high dilution of the effluent in stream water (average of 1.6%). None of the measured variables in any of the experiments followed the predicted subsidy-stress response. Microbial breakdown, respiration rates, exo-enzymatic activities and invertebrate RNA:BM increased with effluent concentrations. Differences in microbial respiration and exo-enzymatic activities among effluent treatments increased with incubation time, whereas microbial breakdown rates and RNA:BM were consistent over time. At the end of the laboratory experiment, microbial respiration rates increased 156% and RN:BM 115% at 100% effluent concentration. Detritivore consumption and growth rates increased asymptotically, and both responses increased with by incubation time. Our results indicate that WWTP effluent stimulates microbial activities and alters detritivore performance, and stream water dilution may mitigate these effects.


Assuntos
Anfípodes/metabolismo , Bactérias/efeitos dos fármacos , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Anfípodes/efeitos dos fármacos , Animais , Ecossistema , Rios , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...