Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 137(3): 034706, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22830723

RESUMO

We examine the interdependence of structural and electronic properties of two substituted pyrene crystals by means of combined spectroscopic probes and density-functional theory calculations. Substituted pyrenes are useful model systems to unravel the interplay of crystal structure and electronic properties in organic semiconductors. To study the effect of steric encumbrance on the crystalline arrangement of two 1,3,6,8-tetraalkynylpyrene derivatives, one features linear n-hexyl side groups while the other contains branched trimethylsilyl groups. Both derivatives form triclinic crystal structures when grown from solution, but the electronic dispersion behavior is significantly different due to differences in π-π overlap along the π-stacking axis. Both systems display dispersion of around 0.45 eV in the valence band, suggesting a high intrinsic hole mobility. However, the direction of the dispersion is different: it is primarily along the π-stacking axis in the trimethylsilyl-substituted derivative, but less aligned with this crystal axis in the hexyl-substituted molecule. This is a direct consequence of the differences in co-facial π electron overlap revealed by the crystallographic studies. We find that photophysical defects, ascribed to excimer-like states, point to the importance of localized trap states.

2.
J Phys Chem B ; 110(15): 7653-9, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610856

RESUMO

A concept for highly ordered solid-state structures with bright fluorescence is proposed: liquid crystals based on tetraethynylpyrene chromophores, where the rigid core is functionalized with flexible, promesogenic alkoxy chains. The synthesis of this novel material is presented. The thermotropic properties are studied by means of differential scanning calorimetry (DSC), cross-polarized optical microscopy (POM), and X-ray diffraction. The mesogen possesses an enantiotropic Col(h) phase over a large temperature range before clearing. The material is highly fluorescent in solution and, most remarkably, in the condensed state, with a broad, strongly red shifted emission. Fluorescence quantum yields (Phi(F)) have been determined to be 70% in dichloromethane solution and 62% in the solid state. Concentration- and temperature-dependent absorption and emission studies as well as quantum-chemical calculations on isolated molecules and dimers are used to clarify the type of intermolecular interactions present as well as their influence on the fluorescence quantum yield and spectral properties of the material. The high luminescence efficiency in the solid state is ascribed to rotated chromophores, leading to an optically allowed lowest optical transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...