Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 4(7): 1858-1863, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28824931

RESUMO

We introduce core-shell plasmonic nanohelices, highly tunable structures that have a different response in the visible for circularly polarized light of opposite handedness. The glass core of the helices is fabricated using electron beam induced deposition and the pure gold shell is subsequently sputter coated. Optical measurements allow us to explore the chiral nature of the nanohelices, where differences in the response to circularly polarized light of opposite handedness result in a dissymmetry factor of 0.86, more than twice of what has been previously reported. Both experiments and subsequent numerical simulations demonstrate the extreme tunability of the core-shell structures, where nanometer changes to the geometry can lead to drastic changes of the optical responses. This tunability, combined with the large differential transmission, make core-shell plasmonic nanohelices a powerful nanophotonic tool for, for example, (bio)sensing applications.

2.
ACS Photonics ; 3(8): 1446-1452, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27563688

RESUMO

We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

3.
J Proteomics ; 75(12): 3778-88, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22579746

RESUMO

Protein carbonyl detection has been commonly used to analyze the degree of damage to proteins under oxidative stress conditions. Most laboratories rely on derivatization of carbonyl groups with dinitrophenylhydrazine followed by Western blot analysis using antibodies against the dinitrophenyl moiety. This paper describes a protein carbonyl detection method based on fluorescent Bodipy, Cy3 and Cy5 hydrazides. Using this approach, Western blot and immunodetection are no longer needed, shortening the procedure and increasing accuracy. Combination of Cy3 and Cy5 hydrazides allows multiplexing analyses in a single two-dimensional gel. Derivatization with Bodipy hydrazide allows easy matching of the spots of interest and those obtained by general fluorescent protein staining methods, which facilitates excising target proteins from the gels and identifying them. This method is effective for detecting protein carbonylation in samples of proteins submitted to metal-catalyzed oxidation "in vitro" and assessing the effect of hydrogen peroxide and chronological aging on protein oxidative damage in yeast cells.


Assuntos
Corantes Fluorescentes/química , Hidrazinas/química , Estresse Oxidativo/fisiologia , Carbonilação Proteica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Eletroforese em Gel Diferencial Bidimensional/métodos , Espectrometria de Fluorescência/métodos
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 1): 021502, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463214

RESUMO

Confinement can have a dramatic effect on the behavior of all sorts of particulate systems, and it therefore is an important phenomenon in many different areas of physics and technology. Here, we investigate the role played by the softness of the confining potential. Using grand canonical Monte Carlo simulations, we determine the phase diagram of three-dimensional hard spheres that in one dimension are constrained to a plane by a harmonic potential. The phase behavior depends strongly on the density and on the stiffness of the harmonic confinement. While we find the familiar sequence of confined hexagonal and square-symmetric packings, we do not observe any of the usual intervening ordered phases. Instead, the system phase separates under strong confinement, or forms a layered re-entrant liquid phase under weaker confinement. It is plausible that this behavior is due to the larger positional freedom in a soft confining potential and to the contribution that the confinement energy makes to the total free energy. The fact that specific structures can be induced or suppressed by simply changing the confinement conditions (e.g., in a dielectrophoretic trap) is important for applications that involve self-assembled structures of colloidal particles.


Assuntos
Coloides/química , Congelamento , Microesferas , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Dureza , Temperatura Alta
5.
Opt Express ; 19(12): 11405-14, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21716371

RESUMO

We imprint plasmonic near field enhancements as nanoscale topography in SU8 photoresist using two-photon absorption from a spectrally filtered broadband supercontinuum light source. Imprinted patterns smaller than 50 nm across are obtained localized at positions of high local field enhancements in gold bow tie antennas, and gold split rings resonant in the visible and near-infrared. Enhanced exposure only occurs at wavelengths and polarizations that exactly match the plasmonic resonances. Hence our work demonstrates that wavelength selective addressing of hot spots for nanolithography using an inexpensive, low peak-power picosecond pulsed source is freely tunable throughout the visible and infrared to match any desired plasmon resonance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...